ビタミンKの電気化学的測定に関する研究

近藤正夫*1 若松美恵*2 花井將裕*3

Study on Electrochemical Determination of Vitamin K Masao KONDO. Mie WAKAMATU and Masahiro HANAI

Food Research Center, AITEC*1, Sugiyama Jogakuen University*2 Department of Industry and Labor* 3

ビタミンKを電気化学的に測定する新しい方法について検討した。ビタミンK濃度が高ければ、酸化型の まま還元電流を測定することによって定量が可能であった。一方、微量の場合は溶存酸素の影響を受けるた め、ビタミンKを白金黒充填カラムで還元した後、酸化電流を測定することによって定量が可能であった。 分離用の逆相カラムを併用することにより、HPLC - 電気化学検出システムで、ビタミンKの分別定量が 可能となった。

1.はじめに

ビタミン K は、図1に示すようなナフトキノン骨格を 有する脂溶性ビタミンの一群1、2)で、血液凝固や骨形成 に関与する重要なビタミンである。自然界には植物にKィ が、そして微生物や動物にKoが存在する。最近は骨粗鬆 症の予防効果3)が期待できることや、新生児・乳児出血 症がビタミンKの欠乏から起きることなどから注目され ている。また日本食品標準分析表の五訂版から分析値が 記載されるなど、今後測定のニーズが高まることが予想 されるビタミンである。

通常ビタミンKの測定は、酸化型のビタミンKが還元 されると蛍光を発する原理に基づき、検出器として蛍光 検出器を用い、ビタミンK同族体を分離するための分離 カラムと組み合わせたHPLC - 蛍光法で行われている 4)。そこで、新たな分析機器の開発を目指し、食品中の ビタミンKを、電気化学的に検出する原理に基づく測定 法について検討した。

2.実験方法

2.1 サイクリックボルタモグラムの測定

ノールに溶解した 500μ Mのビタミン K $_3$ 溶液 1.5 ml を イクリックボルタモグラム 5)は、この電流 電位曲線で 混合し、3 分間窒素ガスを通気した後、マグネッチック ある。 スターラーで攪拌しながら、ビー・ビー・エス(株)製グ ラシーカーボン電極と北斗電工(株)製ポテンショスタッ

ビタミンK同族体の化学構造

ト HAB-15I、及びグラフテック(株)製 X - Y レコーダ WX1000 を組み合わせた装置を使用して、電位を-800mv 0.2 M酢酸ナトリウム緩衝液 (pH4.75) 13.5 ml とエタ から 800mv まで変化させた時の電流変化を測定した。サ

2.2 還元電流によるピタミンK,の定量

電位を-185mv に設定し、0~500 µ M の各濃度のビタ

*1 食品工業技術センター応用技術室 *2 椙山女学園大学 *3 産業労働部産業技術課

ミン K_3 の還元電流を回分系で測定した。 $0.2\,M$ 酢酸ナトリウム緩衝液(pH4.75)13.5mI とエタノールに溶解した $0\sim500\,\mu$ Mの各濃度に調製したビタミン K_3 溶液 1.5mI を混合し、3 分間窒素ガスを通気した後、電位を-185mV に設定し、マグネッチクスターラーで攪拌しながらグラシーカーボン電極で還元電流を測定した。

2.3 フロー系による還元電流の測定

 $0.1 \, \mu \, \text{M} \, \text{レベルの微量のビタミン} \, \text{K}_3 \, \text{の還元電流を、ビー・ビー・エス(株) 製のクロスフローセルとポテンショスタット 1112、日本分光工業 (株) 製ポンプ PU-980、レオダイン製インジェクター7125 から成るフロー系で測定した。$

溶出液として、0.25%過塩素酸ナトリウムを含むメタノール / エタノール=9:1 の溶液 6)を、窒素ガスを通気しながら 1mI/min の流速で流した。ループ容量 $20~\mu$ I のビタミン K_3 溶液を注入し、設定電位-185mv で還元電流を測定した。

2.4 酸化電流によるビタミンKの測定

ビタミン K をより精度良く測定するためには、酸化型ビタミン K を還元型に変換し、その酸化電流からビタミン K の定量を行なった。酸化型ビタミン K を還元する目的のカラムは、キシダ化学(株)製白金黒 645mg をジーエルサイエンス(株)製空カラム(内径 4.0 mm×長さ50 mm)に充填して作製した。溶出液は、窒素ガスを通気しながら、1m I/min の流速で流した。溶出液で調製した0 10 μ M のビタミン K $_3$ を注入し、白金黒充填カラムで還元した後、設定電位 200mv で酸化電流を測定した。

2.5 ビタミン K 同族体の分別定量

ビタミン K 同族体の分別定量は、ジーエルサイエンス (株)製逆相カラム NUCLEOS IL 100_{-5} C₁₈ (内径 4.6 mm × 長さ 150 nm $)^3$ を併用した**図 2** の H P L C E C D (電気化学的検出)法に基づくシステムを用いて行った。 溶出液で調製した 2μ M のビタミン K₁、 K₂、 K₃の混合標準溶液を用い、設定電位 200 mv で酸化電流を測定した。

図2 ビタミンKの分別定量システム

3.実験結果及び考察

3.1 ビタミンKの電気化学的性質

ビタミンKの電気化学的性質を調べるため、ビタミン K同族体のうち構造が最も単純なビタミンK₃を用い、 サイクリックボルタモグラフを作成した。**図3** はその結果である。-185mv 付近に還元電流のピークが現れた。従って、ビタミン K_3 は-185mv で還元すれば、最大の還元電流を検出しやすいと考えられる。

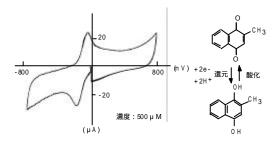


図3 ビタミン K 、のサイクリックボルタモグラフ

3.2 還元電流によるビタミン K₃の定量

サイクリックボルタモグラムから、ビタミン K_3 は -185mv 付近で還元されやすいことが分かったので、電位

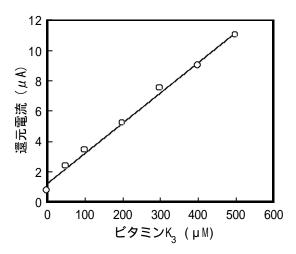


図4 ビタミン K 、の濃度と還元電流との関係

を-185mV に設定し、各濃度のビタミンK₃を測定した結果を**図4**に示すが、濃度と還元電流の間には明瞭な直線関係が認められた。従って、このような濃度範囲であれば、還元電流によってビタミンK₃等の測定が可能であり、検出器が還元と検出を同時に兼ねるため、測定システムは非常に簡単なものになると考えられる。

3.3 還元電流に及ぼす溶存酸素の影響

ところで、実際にビタミンKの測定を必要とする食品や生体試料の場合、ビタミンKの含有量は微量である。そこで、回分系に比べ感度が高く、更に同族体を分離するためのカラムクロマトグラフィーが実施できるフロー系のシステムを用い、微量のビタミンK₃の還元電流を測定した。

図 5 は、 0.1μ M のビタミン K_3 注入後の、還元電流の時間経過を示している。微小な還元電流を検出するため、

感度を最大に上げると、ビタミン K₃溶液注入に伴い、 明瞭なピークが認められた。しかし反面、ベースライン の変動が見られた。この変動は、溶存酸素の影響と考え られる。すなわち、窒素ガスを通気しても溶媒中に存在 している溶存酸素は完全にはとり除くことができず、検 出される還元電流の中には、溶存酸素の還元電流も含ま れることになる。従って、還元電流によって微量のビタ ミンKを測定する場合には、溶存酸素の影響により測定 精度が低下することが危惧された。

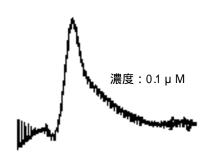


図5 ビタミンK。の還元電流の測定チャート

3.4 白金黒によるビタミンKの還元

微量のビタミンK。を還元電流で測定する場合には、 化型ビタミンKを何らかの方法で還元した後、電気化学 検出器で検出することが考えられる。還元方法としては、 4)と水素化ホウ素ナトリウムによる方法 8)がある。検出 分離され、それぞれ分別定量が可能となった。 段階に電気化学的方法を用いるので、相互の電気的影響 を防ぐため、白金黒充填カラムによる方法と水素化ホウ 素ナトリウムによる方法から選択することとした。両者 を比較すると、前者の場合は、検出器の前に白金黒充填 カラムを設置するだけで実現できることから有利であ 待される白金黒をカラムに充填して使用する方法を採 用した。

元電流はまったく見られなかった。

うに 1.17 分に酸化電流が現れた。このことから、白金黒 うな総体的な指標の測定が適していると考えられる。タ 充填カラムを通る過程で、酸化型ビタミン K は瞬時に還 ーゲットを適切に設定すれば、ユニークな計測機器の開 元されると考えられる。また、白金黒充填カラムは再使発が可能と考えられる。 用が可能であった。

図6 白金黒充填カラム通過後のビタミン K₃の酸化電 流の測定チャート

酸化電流によるビタミンド同族体の分別定量

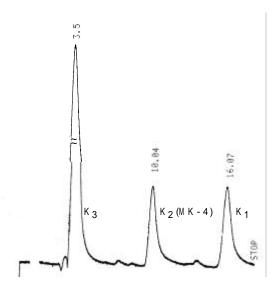

以上の結果より、白金黒充填カラムによって酸化型ビ タミンKを還元型ビタミンKに還元し、次いで電気化学 検出器で還元型ビタミンKを酸化することにより生成す る酸化電流を検出することで、微量のビタミンKが測定 できることが判明した。なお、ビタミンKには同族体が 存在するのでそれぞれを分別定量するためには分離の過 程が必要となる。現時点ではカラムクロマトグラフィー 溶存酸素の影響を受けることから、その対策として、酸 が最も適している。そこで、同族体分離の目的で、逆相 カラムを併用し、ビタミンKの分別定量を行った。

図7は、ビタミンK₁、K₂(MK-4)、K₃共存下での酸 電気化学的方法 $^{\,7}$ 以外に、白金黒充填カラムによる方法 化電流を測定した時のチャートであるが、 $^{\,3}$ 者は明瞭に

> 図8は酸化電流によるビタミン K1、K2、K3の検量 線である。それぞれ定量の目的に利用することができる ことが確認できた。

4 . 結 75

分離カラム、白金黒充填カラム、電気化学検出器を直 る。以上の理由から、還元方法として高い還元能力が期 列に連結することにより、微量のビタミンK同族体の測 定が可能となった。電気化学検出は、迅速性や安定性に 優れている反面、特異性が弱い。従って、同族体の分別 図 6 の(A)は白金黒充填カラムを通し、電位を-185mV 定量のような場合には、分離カラムのような手段が必要 に設定した場合のビタミンK₃の還元電流のチャートで となり、システムがHPLCに類似したものになってし ある。白金黒充填カラムを通さなかった場合に現れた還 まう。そのため、電気化学検出を核とする分析機器の開 発に当たっては、分離を必要としない物質の測定や、化 代わって電位を 200mV に設定すると、図 6 の(B)のよ 学的酸素要求量 (COD) や過酸化物価 (POV)のよ

カラム: Nuc kos il ₅ C ₁₈ 還元カラム: 白金黒充填カラム 検出器: ECD 200m V vs. Ag/AgC I 溶璃液: メタノール / エタノール= 9 / 1 (0.25% 過塩素酸ナトリウムを含む)

流速:1 m l/m in 温度:室温

図7 ビタミンK同族体の分別定量

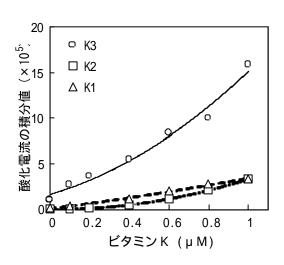


図8 酸化電流によるビタミンKの検量線

油 文

- 1)日本ビタミン学会編: ビタミン学 [] 脂溶性ビタミン, p.237, 東京化学同人 (1980).
- 2)日本ビタミン学会編: ビタミンハンドブック 脂溶性 ビタミン, p.37, 化学同人 (1989).
- 3)平内三政,板野俊行,野津木茂,長岡忠義,森本厚,藤本恭子,増田佐智子,鈴木紀子:ビタミン,63,147 (1989).
- 4)腰原康子: ビタミン, 72, 641 (1998).
- 5) 藤島昭,相澤益男,井上徹:電気化学測定(上), p.159,技報堂出版 (1984).
- 6)長岡忠義, 森本厚, 平内三政: ビタミン, 63, 513 (1989).
- 7) J. P. Langerberg, V. R. Tjaden: J. Chromatogr., 305, 61 (1984).
- 8)阿部皓一, 広島修, 石橋恭子: 薬学雑誌, 99, 192 (1979).