カーボンナノチューブ分散アルミナセラミックスの開発

内田貴光*1、西坂允宏*2

Development of CNT Dispersion Al₂O₃ Ceramics

Takamitsu UCHIDA^{*} and Nobuhiro NISHISAKA^{*}

Seto Ceramic Research Center, AITEC*1*2

従来のカーボン材料とは異なり優れた導電性、熱伝導性、高弾性率を有するカーボンナノチューブ(CNT) をアルミナに添加し均一に混合した CNT - アルミナ複合体を作製した。その結果、焼成温度、混合方法に よっては CNT の構造が損傷、破壊され優れた特性を発揮する事が出来なくなる。そのため CNT に応じた 低温焼成プログラム、弱い力でのミリング方法が求められる。分散させることが困難な CNT に対して適 した界面活性剤を用いることで溶媒にエタノールを用いるよりも水系で CNT を均一に分散させる事がで きた。

1.はじめに

カーボンナノチューブ (CNT) は 1991 年に発見され て以来多くの分野の技術者の関心を集めてきた¹⁾²⁾。構造 的に多層 CNT と単層 CNT に大別され、多層 CNT はグ ラフェンシートが多層に巻かれた構造からなる筒状のも ので直径は約2~25nm である。単層 CNT は一枚のグラ フェンシートが継ぎ目なく巻かれた構造をしており、直 径は約1~2nm である。凝集しやすい傾向にあり通常は 互いに接触した数十もの CNT が平行に束ねられた形態 をしている。アスペクト比、比表面積が大きく従来の炭 素繊維と比べ機械的性質、電気的特性に優れており、そ の分子科学的に特異な性質を有するため水素エネルギー 貯蔵、電界放出材料、電子デバイス、導電性フィラーな ど多方面での応用展開が期待されている。

これまでその特性を活かしてセラミックス中に CNT を添加し、人工股関節のカップ材、ベアリング等の耐摩 耗性、靭性を改善する研究や放電加工を行うために微量 添加で電気的機能と力学的機能を付与する研究などが行 われてきた³⁾⁻⁶⁾。CNT の優れた特性を活かして複合材料 を作製するためには均一分散が極めて重要となる。そこ で本研究ではアルミナと CNT を均一に混合させた CNT 分散アルミナセラミックス作製を目的とした。

2.実験方法

2.1 使用原料

アルミナ原料は低温焼結性アルミナ(大明化学工業㈱, タイミクロン TM-DAR)を使用した。一次粒子径が約 0.1µm と微細粒であり、1250 ~1300 で焼結し緻密 化することが特徴として挙げられる。

CNT はアーク放電法によって製造された単層カーボ ンナノチューブ(㈱名城ナノカーボン製、純度 30~40%) を使用した。電子顕微鏡像を**図1**に示す。

図1 CNT の電子顕微鏡観察像

2.2 CNT の分散性の検討

CNT の分散性⁷について水、エタノール、水と分散剤 の3種類の溶液中にそれぞれ CNT を添加し、超音波分 散処理を行いその分散状態を比較した。

2.3 試験体の作製

アルミナに対して CNT を 0.1、0.5、1、2%となるように秤量し、溶媒の水、エタノール、水と分散剤をそれ

ぞれポットミルに添加し混合してスラリーを作製した。 このスラリーを乾燥後、開き目 224 µm の篩を全通する よう造粒し、金型を使用して一軸加圧成形を行った。焼 成は窒素雰囲気下、1250、1350 、1時間保持の条件で 行った。作成手順を**図2**に示す。

2.4 評価試験

試験体の評価はかさ比重、体積抵抗率を測定した。か さ比重はアルキメデス法、体積抵抗率は室温で測定を行 った。また走査型電子顕微鏡(S-2360N)により焼結体 の微細構造を観察した。

3.実験結果及び考察

3.1 CNT の分散性の検討

図3に各種溶液中のCNT分散状態を示す。CNTは一般に、van der Waals力に由来する物理凝集とアスペクト比の大きいチューブ同士が絡まりあった状態で凝集し

図3 CNT 分散状態 左:水+分散剤 中央:エタノール 右:水

ているため、分散させることは困難であった。

水中では超音波処理を行っている最中でも分散させる ことができず、凝集したままであった。エタノール中で は超音波処理により一様に分散させることができるが時 間がたつにつれ凝集し沈殿した。CNT分散剤を用いるこ とで CNT を均一に、長時間安定な分散液を作製するこ とができた。

3.2 かさ比重

図4、5に1250 及び1350 焼成時の CNT 添加量 に対するかさ比重の関係を示す。いずれの試料も冷間等 方圧加圧装置や熱間等方圧加圧装置を用いておらず一軸 加圧成型であるために完全に緻密化していない。

図5 CNT 添加量に対するかさ比重の関係(1350)

1250 で焼成した試料は 1350 で焼成した試料に比 べかさ比重が小さく、焼成温度が低いため 1250 では完 全に焼結しなかった。CNT の添加量が増加することによ ってかさ比重が低下しているが、これはアルミナのかさ 比重 3.98g/cm³に比べ CNT のそれが 1.4 g/cm³と低いた めと考えられる。

3.3 体積抵抗率

図6、7に1250 及び1350 焼成時のCNT添加量に 対する体積抵抗率の関係を示す。絶縁体であるセラミッ

図6 CNT 添加量に対する体積抵抗率の関係(1250)

図7 CNT 添加量に対する体積抵抗率の関係(1350)

クス中に電気が流れるのは CNT が連なった導電パスを 生じているためである。均一に CNT が分散していれば バルク体中に導電パスが形成され導電度が増加し、逆に 分散不良が生じた場合には導電度が低下すると考えられる。

CNT は水中、エタノール中では、ボールミルで混合し たとしても分散剤を用いた場合に比べ均一に分散させる ことができない。分散剤を用いた試料 C では他の試料に 比べ均一に分散しているため体積抵抗率が低下したと考 えられる。

1250 で焼成した試料の体積抵抗率は 1350 で焼成 した試料よりも低下している。これは構造中に欠陥も持 つCNTが1350 の温度では損傷し1250 の焼成温度で はその破壊を軽減できるためだと考えられる⁸⁾⁹⁾。

3.4 SEM 観察像

図8、9、10に試料 Cの CNT 添加量 0%、2%、試料 Bの CNT 添加量 2%の破断面の SEM 像を示す。試料 B は分散剤を用いなかったため CNT が凝集した状態が 観察された。試料 C では一部に CNT の粗密が観察され るものの全体としては均一に CNT が分散していた。この 結果は体積抵抗率の結果を裏付けている。

図8 電子顕微鏡観察像(試料C、CNT添加量0%)

図9 電子顕微鏡観察像(試料C、CNT添加量2%)

分散法によっては、機械的応力によって CNT が切断されたり、グラフェンシート構造の損傷により、CNT の特性が影響を受ける。そのため、ボールミリングやロール ミリング、超音波処理など様々なミリング方法があるが、 CNT に応じた最適な混合条件が必要となる。今回の結果 からはミリングによって CNT の形状が破壊される様子 は観察されなかった。

図10 電子顕微鏡観察像(試料 B、 CNT 添加量 2%)

4.結び

凝集しやすい CNT をアルミナと分散剤を用いて均一 に混合し 1250、1350 、窒素雰囲気下で焼成し,かさ密 度、体積抵抗率、微構造の観察を行い以下のことが分か った。

- (1)溶媒にエタノールを用いるよりも水系に分散剤を添加することで均一に CNT を分散させた CNT アルミナ複合体を作製することができた。
- (2)CNT の構造は焼成温度の影響を大きく受け、1250
 から 100 上昇すると CNT の構造の損傷により導電
 度が低下する。
- (3)これら一連の材料、作製方法を最適化することによっ て破壊靱性や摩擦、摩耗特性を改善させた人工股関節 のカップ材や優れたベアリング等の摺動材料、また電 波吸収板や電気抵抗を制御したヒーターなどの材料と して期待できる。

文献

- 1) S.lijima: Nature, 354, 56-58(1991)
- 2) S. lijima, T. Ichihashi: *Nature*, **363**, 603-605(1993)
- 3)山本,大森,橋田:工業材料,56(1)P10~11(2008)
- 4) 関野, 楠瀬, 新原:工業材料, 53(8) P42~45(2005)
- 5) 近藤,多々見,脇原,米屋,目黒:第20回日本セラミッ ク協会秋季シンポジウム,P36(2007)
- 6)高橋,多々見,脇原,米屋,目黒,小豆:第20回日本セラ ミック協会秋季シンポジウム,P98(2007)
- 7)安藤敏夫,内田貴光:愛知県産業技術研究所報告,6, 112(2007)
- 8)G.D.Zhan , J.D.Kuntz , J.Wan , A.K.Mukherjee : *Nat.Mater.***2** , 38-42 (2003)
- 9) Laurent.Ch , Peigney,A , Dumortier.O,Rousset.A : J.Euro.Ceram.Soc , 18 , 2005-2013 (1998)