電気泳動法を利用した色素増感太陽電池用電極の作製

加藤一徳*1、加藤正樹*1、鈴木正史*1、菅沼幹裕*1

Preparation of Semiconductor Electrodes for Dye-sensitized Solar Cells with Electrophoresis

Kazunori KATOH^{* 1}, Masaki KATO^{* 1}, Masashi SUZUKI^{* 1} and Motohiro SUGANUMA^{* 1}

Research and Development Division, AITEC*1

色素増感太陽電池用酸化チタン半導体電極の作製を、酸化チタンナノ粒子(粒子径:約25nm)の電気泳動とゾルゲル処理により試みた。電位勾配-250V/cm以上で透明導電(IT0)ガラス陰極基板上にナノ粒子が堆積し、多孔質状の酸化チタン膜が形成された。引き続くゾルゲル処理により強固な膜となった。ルテニウム系色素(N719)を酸化チタン表面に吸着させた後、色素増感太陽電池を作製し、その発電特性を評価したところ、開放電圧は約0.7Vで、短絡電流はゾルゲル処理により約3倍(2 6mA/cm²)に増加した。

1.はじめに

シリコン系太陽電池に比べ、色素増感太陽電池は安価 な構成材料で単純な構造を持つ次世代太陽電池として注 目されている。この太陽電池は、光合成模倣型太陽電池 とも呼ばれ、葉緑素が行う光誘起電子移動と同様なメカ ニズムで発電するので、シリコン系太陽電池のような pn 接合型太陽電池とは発電機構が全く異なる。

色素増感太陽電池¹⁾は、半導体電極と対向電極の間 に電解質溶液を充填した構造を持つ(**図1**)。半導体電 極はナノサイズの酸化チタン粒子からなる多孔質膜と透 明導電膜 ITO(酸化インジウム-酸化スズ)付きガラス基 板で構成され、酸化チタン粒子に色素を吸着させている。 電解質溶液は、電子を授受するためにヨウ素イオン酸化 還元対を含む。太陽光照射下で色素分子は可視光を吸収 し、酸化チタンの価電子帯へ電子を注入する。注入され た電子は酸化チタン、ITO、外部回路、対向電極、電解 液を経て、再び色素に戻る。受光している間、このよう な電子の流れが繰り返される。

色素を光電池に応用した研究は 1970 年代から行われ ていたが²、性能はかなり低いものであった。1991 年に グレッツェルらが上記図 1 の構造を持つ色素増感太陽電 池を作製した³、光電変換効率は飛躍的に向上し、10% 以上に達した。これは、広い波長域で光を吸収するルテ ニウム色素(N3、N719等)を開発したこと、また酸化チ タンを多孔質状に成膜することで色素の吸着量を向上さ せたことに起因している。

色素増感太陽電池はシリコン系電池と同様に家庭用

定置型電源として検討されている。一方、電極基板にプ ラスチック等を用いることにより、軽量かつフレキシブ ルな電池が実現可能で、モバイル機器用の補助電源など 新規な用途への応用も期待できる⁴⁾。しかし、色素増感 太陽電池に用いられる半導体電極は、酸化チタンナノ粒 子のペーストを基板に塗布後約 500 で焼成することに より作製される。したがって、プラスチック基板を使用 するためには、その耐熱性などから判断して約 150 以 下の低温で酸化チタン多孔質膜を基板上に成膜する技術 が求められる。

図1 色素増感太陽電池の構成図

これまで、低温成膜法として酸化チタンナノ粒子を用 いた電気泳動法⁵⁾⁶や高圧圧着法⁷⁾が試されているが、 上記の焼成法に比べて膜が脆く発電性能も低い。そこで、 本研究では、強固な酸化チタン膜を低温で成膜する技術 を検討した。電気泳動法に加えてチタンアルコキシド溶 液によるゾルゲル処理を併用して強固な成膜と高発電効 率化を試みた。泳動条件やゾルゲル処理条件と、電池の 発電特性との関係を調べた。

2.実験方法

2.1 試料

酸化チタンナノ粒子に日本アエロジル㈱製の P25(平 均粒子径 20nm)を使用した。電極基板には透明導電膜 ITO(酸化インジウム-酸化スズ)でコーティングされた ガラス基板(ITO ネサガラス IN-100、シート抵抗値 10

/cm²、フルウチ化学㈱)を用いた。2×2cm に切断し、 アセトニトリル中で超音波洗浄後使用した。色素には、 ルテニウム錯体系色素 N719(PECD07、ペクセルテクノロ ジーズ製)を用いた。

2.2 電気泳動法による半導体電極の作製

2.2.1 酸化チタン P25分散液の調製

0.4gの酸化チタン P25 に t-ブチルアルコール 20cc を加え、30分間超音波処理することにより、P25を分散 させた。

2.2.2 電気泳動法による酸化チタンの成膜

図2に示すように2枚のIT0ガラスにスペーサー(厚 み150µm)を挟み固定した。IT0ガラスの間にP25分散 液を充填し、直流電圧4Vを印加した。30秒後印加電圧 を8Vに上げ30秒間保持した。酸化チタンナノ粒子が付 着した方のIT0ガラス(陰極)を140 で1時間乾燥し た。以上の操作を4回繰り返してIT0ガラス上に酸化チ タン膜(5mm×5mm)を成膜し、半導体電極を作製した。

図2 電気泳動法の模式図

2.2.3 酸化チタン膜のゾルゲル処理

前項の酸化チタン膜に対しチタンアルコキシド溶液 でゾルゲル処理した。まず、t-ブチルアルコールにチタ ンテトライソプロポキシド(TTIP)と等モル量のジエタ ノールアミンを溶解し4、2、1.3%TTIP溶液を調製した。 溶液を撹拌しながら、2N硝酸水溶液を少量滴下し、白濁 ゾルを得た。また、エトキシエタノールにTTIPを溶解 し、同様に硝酸水溶液を加えて、淡黄色の透明ゾルを得 た。酸化チタン膜にゾルを滴下し、乾燥後、150 で 4 時間熱処理した。

2.3 酸化チタン多孔質膜の走査型電子顕微鏡観察

上記 2.2 の方法で調製した半導体電極を白金蒸着後、 その電極基板上の酸化チタン多孔質膜を走査型電子顕微 鏡 S-3000N(㈱日立ハイテクノロジーズ製)により、加 速電圧 20kVで観察した。

2.4 色素増感太陽電池の作製

2.4.1 酸化チタン膜への色素吸着

ルテニウム色素 N719 を t-ブチルアルコールとアセト ニトリルの1:1 混合溶媒に溶解し、3×10⁻⁴M 溶液を調製 した。色素溶液に2.2の方法で調製した半導体電極を浸 漬し、40 で2時間保持して色素を吸着させた。

2.4.2 色素増感太陽電池の構築

半導体電極と、白金を蒸着した ITO ガラス(対向電極) を図1のように重ね、スペーサー(厚み 50µm)を挟ん で固定した。電極間に電解液を充填した。

電解液の組成は、 $0.05M I_2$ 、0.1M Lil、0.6M dimethylpropylimidazolium iodide、0.5M 4-t-ブチルピリジン で、それらをアセトニトリルとプロピレンカーボネート の1:4混合溶液に溶解し電解液とした。

2.5 色素増感太陽電池の発電特性評価

光電気特性測定装置 PARSTAT2263-SSW164(北斗電工 (株製)を用いて、光源から AM(エアマス)1.5G、強度 100mW/cm²の擬似太陽光を照射しながら、試作した色素 増感太陽電池の電流-電位(I-V)特性を測定した。ここ で、電池の受光面積を半導体電極の酸化チタン膜の面積 5mm×5mmとして、電流(mA)から電流密度(mA/cm²)を 算出した。

3.実験結果及び考察

3.1 電気泳動法による酸化チタン多孔質膜の成膜

アルコール溶液中に分散した酸化チタンナノ粒子は正の(ゼータ)電位を持つため、直流電圧下では陰極側に泳動することが知られている。実際、8Vの直流電圧を印加したところ、t-ブチルアルコール中に分散する酸化チタンナノ粒子のほとんどが陰極側のITOガラスに静電的に付着し、膜を形成した。ITOガラス上に付着した酸化チタンの電子顕微鏡写真を図3と図4に示す。図3から均質な膜が形成されていることがわかった。また、図4より、高倍率では密集した酸化チタンナノ粒子の隙

間にナノスケールの細孔が観察され、多孔質構造となっていることがわかった。

図3 ITO ガラス上に成膜した酸化チタン膜

図4 IT0 ガラス上に堆積した酸化チタン粒子

3.2 酸化チタン多孔質膜のゾルゲル処理

電気泳動法で成膜した酸化チタン多孔質膜は単に付着 したナノ粒子で構成されているため、非常に脆く、崩れ やすい。チタンテトライソプロポキシド(TTIP)をアル コールに溶解したゾルを調製し、ゾルゲル法により膜の 密着性の向上を図った。

t-ブチルアルコールを溶媒としてゾルを調製すると 白濁したゾルが得られた。添加した硝酸水溶液が触媒と なり TTIP が縮合し凝集するためである。一方、エトキ シエタノールを溶媒として調製したゾルは硝酸水溶液を 添加後も透明のままで、TTIPの縮合の進行が非常に遅い と推測される。ゾルゲル処理には、これら2種類のゾル を使用し、処理後の膜構造を観察した。図5と図6にゾ ルゲル処理後の酸化チタン多孔質膜の電子顕微鏡写真を 示す。

白濁ゾルで処理した場合、膜の表層部分には亀裂の入った緻密な層が観察された(図5)。これはゾル中の TTP が膜の表面にのみ付着したためで、乾燥収縮により亀裂 が入ったと推測される。このような現象の原因として、 縮合および凝集した TTIP がそのサイズにより、膜のナ ノスケールの細孔に進入できなかったことが考えられる。

図6 ゾルゲル処理後の酸化チタン膜(透明ゾル)

透明ゾルで処理すると、処理前(図3)と比べて変化 なく多孔構造が観察された(図6)。しかし、脆くなく、 ITO ガラスに対し強固に密着した膜であった。これは TTIP が多孔質膜全体に付着して、酸化チタンナノ粒子と ITO ガラスを接着したためと考えられる。

3.3 ナノ粒子とゾルの混合液を用いた電気泳動成膜

ナノ粒子の電気泳動とゾルゲル法の同時処理を試み た。まず、ナノ粒子の分散液に透明ゾルを添加して混合 溶液を調製した。ここで、ナノ粒子の濃度を2%に固定し、 TTIPの濃度が0.03、0.2、0.4、0.9%になるよう透明ゾ ルを添加した。得られた混合溶液を電気泳動法で成膜し た後、150 で乾燥した。TTIP濃度0.03%では、脆く崩 れやすい膜であったが、TTIP濃度が0.2、0.4、0.9%の 混合溶液を使用したところ、いずれの場合も強固で密着 性の高い膜が得られた。

3.4 色素増感太陽電池の発電特性

得られた半導体電極を用いて、色素増感太陽電池を作 製し、発電特性を評価した。図7と図8に電池の電流-電位(I-V)特性を示す。まず、電池の開放電圧は酸化 チタンの成膜条件によらず約0.65~0.7Vを示した。色 素増感太陽電池では一般的に0.65~0.75Vの値が報告さ れているので、妥当な値と考えられる。 一方、0Vにおける電流値(短絡電流)は、成膜条件に 影響されることがわかった。電気泳動法のみで成膜した 場合、短絡電流は、2.4mA/cm²と低く十分な発電性能が 得られなかった。しかし、ゾルゲル処理すると短絡電流 値が飛躍的に上昇し、TTIPの濃度 2.0%で 5.3mA/cm²を 示した(図7)。電気泳動では酸化チタンナノ粒子はITO 基板上に付着しているだけなので、粒子間および粒子と ITO 基板との間での電子伝導性は低く、その結果十分な 電流が得られない。ゾルゲル処理により短絡電流が上昇 したのは、粒子同士が接着し電子伝導性が増したためと 考えられる。

図8 色素増感太陽電池の I-V 特性(ゾル添加 P25 分散液の電気泳動により成膜した半導体電極)

また、酸化チタンナノ粒子とゾルの混合溶液から成膜 した場合も、ゾルを添加することにより短絡電流値が向 上し、混合溶液中の TTIP 濃度が 0.4% で 6.3mA/cm²とな った(図8)

4 . 結び

色素増感太陽電池は、シリコン系電池のpn接合と異なり、電極で電解液をサンドイッチしたシンプルな構造を持つ。ゆえに、電極基板にプラスチックを使用するだけで、軽量かつフレキシブルな太陽電池が可能となる。 そのためには、酸化チタンの低温成膜技術がキーとなる。

今回、酸化チタン多孔質膜を電気泳動法と引き続くゾ ルゲル処理により ITO ガラス基板上に成膜し、色素増感 太陽電池用半導体電極を作製した。ゾルゲル処理は、膜 の密着性を高めるだけでなく発電性能に対し有効な処理 であった。本成膜法は 150 以下で成膜できるため、電 極基板にプラスチックを使用することが可能である。ま た、簡易な方法として、ナノ粒子とゾルの混合溶液を使 用した電気泳動により、強固な膜の作製が可能であるこ とを確認した。

今後、膜厚など成膜条件を最適化し、発電性能を向上 するための検討を行う予定である。

謝辞

本研究は、日本自転車振興会「平成17年度公設工業 試験研究所の設備拡充補助事業」において導入した光電 気特性測定装置を用いて実施した。ここに感謝いたしま す。

文献

- 1)柳田ほか:実用化に向けた色素増感太陽電池, (2004),エヌ・ティー・エス
- 2) R. Memming: Semiconductor electrochemistry, (2001), Wiley-VCH
- 3) O'Regan and Graetzel: *Nature*, **335**, 737(1991)
- 4) 宮坂ほか:薄膜太陽電池の開発最前線, (2005), エヌ・ティー・エス
- 5) N. Murakami *et al.*: *J. Photochem. Photobiol.A.*, **164**, 187(2004)
- 6) T. Miyasaka *et al.*: J. Electrochem. Soc., 151, A1767(2004)
- 7) G. Boschloo *et al.*: *J. Photochem. Photobiol. A.*,**148**,11 (2002)