研究論文

電気化学インピーダンス測定を用いた

固体高分子形燃料電池の性能評価

鈴木正史*1、村上英司*1

Evaluation of Polymer Electrode Fuel Cells using Electrochemical Impedance Spectroscopy

Masashi SUZUKI^{*1} and Eiji MURAKAMI^{*1}

Industrial Technology Division, AITEC*1

固体高分子形燃料電池(PEFC)に用いられる膜・電極接合体(MEA)を作製し、セル温度 80℃、飽和加湿、供給ガス:水素 (1.0L/min) /空気(2.5L/min)の条件で、発電試験を行い電流・電圧特性を測定した。その結果、白金担持量 0.2 および 0.3mg/cm²·MEA の発電性能は、最大電流密度で、それぞれ 1.6、1.9A/cm²·MEA、最大出力密度は、420、520mW/cm²·MEA で あった。また、単位白金量に対する出力は、それぞれ 2.1、1.7kW/g·Pt であった。この結果、低白金担持量の方がより効率的 に触媒が反応に寄与していることが確認された。さらに、各種電流密度における電気化学インピーダンス測定を行った。そ の結果、電解質膜抵抗は、0.20~0.24Ωcm² であった。これに対し、触媒による反応抵抗は、白金担持量 0.3mg/cm²·MEA に 比べて、0.2mg/cm²·MEA では約 0.1Ωcm² 程度高く、また、電流密度の違いにより大きく抵抗値が変動することが分かった。 本研究において作製した、固体高分子形燃料電池の発電性能を大きく左右する要因は、触媒による反応抵抗であり、電気化 学インピーダンス測定(EIS)を用いてこの値を評価することで、研究開発に有益な情報が得られることを明らかにした。

1. はじめに

近年、化石燃料に替わる新たなエネルギー源が求めら れている。固体高分子形燃料電池(PEFC)は、低温動作が 可能であり、かつ、携帯電話電源から自動車・家庭用電 源まで幅広い用途に対応できるため、実用化への研究が 急速に進められている¹⁻³⁾。

PEFCは、水の電気分解の逆の反応であり、水素ガス と酸素ガスを供給することで発電する。この反応を行う 部分は、膜・電極接合体 (MEA) と呼ばれ、プロトン (H+) 導電性を有する電解質膜の両側に電極層がホットプレス などにより接着されている。この電極層は、一般に白金 担持カーボン触媒 (Pt/C) と電解質膜の同種の成分が含 まれている。

PEFC の発電性能に影響を及ぼす主な要因として、電 解質膜のプロトン導電性(膜抵抗)、電極における触媒活 性(反応抵抗)が挙げられる。PEFC の詳細な性能評価 のためには、これらの抵抗成分を分離し、実用化へ向け た製品開発の原因を解明することが必要である。

膜抵抗のみを測定する方法として、電流遮断法 ⁴があ る。この方法は、PEFCを定負荷状態に保ち、瞬時に電 流を遮断したときの電圧変位から膜抵抗を求める。非常 に簡便で、その測定結果の解析も容易であるが、遮断を 繰り返すことで PEFC への損傷が大きくなり、測定前後 における発電性能に差異が生ずる。

これに対し、電気化学インピーダンス測定(EIS)法 ⁵⁾は、PEFCを定負荷状態に保ち、微小な交流電流を負 荷として重畳させ、その際の電池電圧を測定する。PEFC の場合、図1のような単純な等価回路を用いて、得られ た測定結果を評価する⁶⁾。電極/電解質界面は、電解質側 に電気二重層が形成されるため、その容量は電気二重層 容量(C_d)と示される。電解質膜抵抗を R_{sol}、触媒によ る反応抵抗を R_{et}と表す。

図1 燃料電池の等価回路

 R_{sol} 、 R_{ct} 、および C_{dl} のインピーダンス (Z_{sol} 、 Z_{ct} 、および Z_{dl}) は、それぞれ、式(1)、(2)、(3)のように表される 7_{o}

$$Z_{sol} = R_{sol}$$
(1)

$$Z_{ct} = R_{ct}$$
(2)

$$Z_{dl} = \frac{1}{j\omega C_{dl}}$$
(3)

*j*は虚数を、ωは角周波数を表す。従って、図 1 に示 した等価回路のインピーダンス(Z)は、式(4)で表すこ とができる。

$$Z = Zsol + \frac{Z_{ct} \cdot Z_{dl}}{Z_{ct} + Z_{dl}}$$
$$= R_{sol} + \frac{R_{ct}}{1 + j\omega R_{ct}C_{dl}}$$
(4)

また、Zは、式(5)の複素数式で表される。

$$Z = Z' - jZ'' \tag{5}$$

Z'、Z'は、インピーダンスの実数成分と虚数成分をそれ ぞれ表す。さらに、実数成分と虚数成分を分けると、式 (6)、(7)で表される。

$$Z' = R_{sol} + \frac{R_{ct}}{1 + \omega^2 R_{ct}^2 C_{dl}^2}$$
(6)
$$Z'' = \frac{\omega R_{ct}^2 C_{dl}}{1 + \omega^2 R_{ct}^2 C_{dl}^2}$$
(7)

上記2式から、ωを消去すると、式(8)が得られる。

$$\left(Z' - R_{sol} - \frac{R_{ct}}{2}\right)^2 + Z''^2 = \left(\frac{R_{ct}}{2}\right)^2$$
(8)

式(8)を、Z'-Z"座標にプロットすると、($R_{sol}+R_{ct}/2$ 、0) を中心とする半径 $R_{ct}/2$ の半円が得られる(ナイキスト 線図)。Z 座標軸上の 2 点の交点は、 R_{sol} 、 $R_{sol}+R_{ct}$ であ る。したがって、ナイキスト線図を作成することで、2 種の抵抗値(R_{sol} 、 R_{ct})が求められる。

以上のように EIS 法は、その測定結果を式(8)を用い て解析することで、膜抵抗および反応抵抗値を得ること ができ、さらに、電流遮断法のような急激な負荷変動が 不要であるため、PEFC の損傷がほとんど起きないとい う利点がある。しかし、EIS 法は、その測定結果の解析 が難しく、測定時間が長時間におよぶ場合もある。

そこで本研究では、MEA を作製し、それを用いて、 電流・電圧測定とともに、各種発電条件における EIS を 行った。さらに、EIS 法の測定結果を解析し、膜抵抗お よび反応抵抗値の変動について評価を行った。

2. 実験方法

2.1 MEAの作製

本研究では、電解質膜(Nafion 212CS) を 4×4cm² に切り、NEDO 固体高分子形燃料電池プロジェクトで設 定された、膜の標準前処理を行った⁸⁾。

MEA 作製工程は以下の通りである。50wt.%白金担持 カーボン触媒の白金量に対して、電解質の重量比が70% となるように5%電解質分散液(Nafion DE2020)を加 えた。溶媒(水:メタノール=1:10)を加え超音波で分散 させた後、テフロンシート上にこの分散液を滴下し白金 量が0.2および、0.3mg/cm²-MEA となるように調製した。 大気圧下で乾燥させた後、この電極層/テフロンシートを 5cm²に2枚切り出した。電解質膜に電極層を転写させる 為、この2枚の電極層/テフロンシートの間に、電解質膜 を挟み、ホットプレス(条件:150℃、5MPa、3min) を行った。テフロンシートを剥がした後、5cm²のガス拡 散層(東レ TGP-H-090)2枚を電極層両側に置き、電 極面積 5cm²の MEA を作製した。

2.2 発電試験

白金担持量 0.2、 0.3mg/cm^2 -MEA の各 MEA を燃料電池 標準単セル (Electrochem 社製 EFC-05-02、電極面積 5cm²) に組み込み、燃料電池評価装置 (チノー社製 FC5100series)を用いて発電試験を行った。供給ガスの 条件としては、セル温度およびバブラー温度とも 80℃を 選択し、反応ガスとしては水素電極側に飽和加湿水素ガ ス(1.0L/min)、酸素極側に飽和加湿空気(2.5L/min)を供 給した。

2.3 EIS法による抵抗値測定

発電試験と同様の条件において、電流密度 0.2~ 1.2A/cm²(0.2A/cm²毎)の直流電流を負荷し、周波数応 答アナライザ(オートラボ社製 PGSTAT302)を用い て、交流電流 100mA を重畳し、100mHz~10kHz(内 測定 50 点、対数分割による)までの EIS 法による抵抗 値測定を行った。

3. 実験結果及び考察

3.1 発電試験

白金担持量 0.2、0.3mg/cm²-MEA の各 MEA の発電試験 の結果を図 2 に示す。得られた値を、PEFC における電 流-電圧の理論式である式(9)を用い、最大電流密度(電 圧=0)、最大出力密度(電圧×電流密度=最大値)を求め た⁹⁾。その結果、白金担持量 0.2、0.3mg/cm²-MEA の各 MEA の最大電流密度は、それぞれ、約 1.6、1.9A/cm²、 また、最大出力密度は、0.42、0.52W/cm² であった。

E=E₀-R×I-b×ln(I)-m×exp(n×I) (9)
 (E; 電圧(V)、E₀; 開回路電圧(V)、R; 膜抵抗(Ω·cm²)、
 I; 電流密度(mA/cm²)、b; 活性化過電圧(V)、m; 濃

度過電圧(V)、n; 濃度過電圧定数=0.008(cm²/mA))

白金が多く担持されている 0.3mg/cm²の MEA は、最 大電流密度、最大出力密度ともに、性能が良かった。し かし、単位白金量に対する出力密度を比較すると、0.2、 0.3mg/cm²の MEA はそれぞれ、2.1、1.7kW/g-Pt であり、 0.2mg/cm² は高効率な電極作製方法であることが示され た。

3.2 EIS法による抵抗値測定

白金担持量 0.2mg/cm²-MEA の MEA を用い、電流密度 0.2A/cm²において測定した結果のナイキスト線図 を図3(点線)に示す。また、EIS 法により得られた Z'、 Z'を式(8)に代入し、最小二乗法により最適化を行っ た。得られた R_{sol}、R_{ct}、および C_{dl}をもとに作成したナ イキスト線図を図3(実線)に示す。

ナイキスト線図では、ωが増加するにつれて、Z'-Z"座 標上を反時計回りにプロットされる。100mHzから7Hz の低周波数領域では、実測値に乱れが生じた。これは、 ある周波数での EIS 法に要する時間が長く(100mHz で は10秒を要する)、測定中の電圧の微小な揺らぎにより 測定に誤差が生じたと考えられる。また、750Hzから 10kHzの高周波領域において、実測値と最適化後のナイ キスト線図に乖離が見られた。これは、周波数応答アナ ライザと燃料電池セル間のケーブルの状態、測定外部環 境による影響であると考えられる。したがって、適切な 抵抗値(特に R_{ct})を求めるためには、式(8)を用いた最 適化が必要である。

PEFC の電極は、触媒、電解質、電子伝導体、細孔が 存在する三次元構造の中を反応ガス、プロトン水が移動 する複雑な多孔質電極となっている。この様な不均一状 態の電極を用いて EIS 法を行うと、ナイキスト線図にお いて、半円に歪みが生じる。この影響により、45Hz か ら 750Hz の領域において、乖離部分が見られたと考えら れる。これを最適化するために、図 1 の Cdl を CPE((constant phase element)として最適化する方法が ある。CPE のインピーダンス (ZCPE) は、式(10)の様に 示される。なお、T は CPE 定数、p は CPE 指数を表す。

$$Z_{CPE} = \frac{1}{\left(j\omega\right)^p T} \tag{10}$$

EIS 法により得られたナイキスト線図が、楕円状の場 合、CPE を用いた等価回路を用いることで、より正確な 最適化を行うことが可能である。特に電気二重層容量 (Cal もしくは CcPE)を評価する場合、有用な手法であ る。しかし、最適化の手法がより煩雑になり、また、Rsol および Ret の値には、ほとんど影響を与えない。本研究 では、得られたナイキスト線図が半円に近く、発電中に おける PEFC 内の Rsol および Ret の変化を考察している ため、図1の等価回路を用いて最適化を行った。

2 種の MEA の各電流密度において行った、EIS 法の 測定結果も同様に最適化を行った。その結果を、図4(白 金 担 持 量 0.2mg/cm²-MEA)、図 5 (白 金 担 持 量 0.3mg/cm²-MEA)に示す。なお、比較のため図中にそれ ぞれの電流-電圧曲線(実線)もプロットした。

図4、5から、すべての電流密度域で、R_{sol}は0.2~0.24 Ω cm²であり、大きな抵抗値の変化は見られなかった。 電解質膜のプロトン移動における抵抗は、その移動量の 増減にほとんど依存しないことが示された。これに対し、 R_{ct}は電流密度の変化に対して、大きな違いが見られた。 低電流密度域では抵抗値が高く、電流密度約 0.5A/cm² で最小となり、その後再び抵抗値が上昇し、高電流密度 で最も抵抗値が高くなった。本研究では、どの電流密度 でも同量の反応ガス(水素および空気)を供給している。 したがって、低電流密度域では、反応に必要な量以上の 反応ガスが電極中の触媒表面を被い、触媒反応の妨げと なっていることが考えられる。この現象は、電流密度の 上昇とともに減少していくが、高電流密度域においては、 反応により生じる水が触媒反応の妨げとなっていると考 また、白金担持量の違いにより、Rct の値は大きく異なった。最小値で比較すると、白金担持量 $0.2mg/cm^{2}$ -MEAでは、 $0.28\Omega cm^{2}$ (電流密度 $0.5A/cm^{2}$)であり、白金担持量 $0.3mg/cm^{2}$ -MEAでは、 $0.19\Omega cm^{2}$ (電流密度 $0.7A/cm^{2}$)であった。どの電流密度域においても白金担持量 $0.3mg/cm^{2}$ -MEAに比べて $0.2mg/cm^{2}$ -MEAでは、約 $0.1\Omega cm^{2}$ 程度高い Rct を示した。

この EIS 法は、直流電流に交流電流を重畳することで インピーダンスを得るため、低周波の測定には非常に長 時間の測定を要する。PEFC では、低周波での測定中に、 微小な電池内の状態変化により測定結果に大きな誤差が 生ずる。そこで、本研究で実施した EIS 法は、一般にい われている 10mHz (測定時間 100 秒)までの測定 10,11 を行わず、100mHz (測定時間 10 秒)までの測定を実施 した。両者の結果を、最適化により比較検討を行った結 果、 R_{et} 、 R_{sol} ともに差異は生じなかった。これにより、 EIS 法に要する時間の大幅な短縮が可能となった。

以上のことから、本研究において作製した PEFC の発 電性能に及ぼす最も大きな要因は、触媒による反応抵抗 であることが明らかとなった。EIS 法を用いることで、 この値を正確に測定することが可能となり、PEFC の開 発研究における指標として、極めて重要であることが示 された。

4. 結び

本研究により、EIS 法を用いることで、PEFC の実発 電中の MEA 内の各種抵抗を分離することが可能であり、 触媒による反応抵抗が最も重要な要因であることが明確 となった。また、EIS 法により Rct、Rsol の測定時間の 大幅な短縮が可能となった。

本研究では、図1に示した等価回路を用いて、抵抗値 の最適化を行ったが、この回路をさらに応用することで、 アノード(負極)、カソード(正極)での触媒による反応 抵抗を分離することや、電極中の電解質膜からの距離に よる反応抵抗の違いを評価することが可能となる。この 様な測定は、他の測定手法と組み合わせることで、さら に重要な情報を得ることが出来ると期待される。

文献

- B. D. McNicol, D. A. J. Rand and K. R. Williams : *J. Power Sources*, **100**, 47 (2001)
- B. Wahdame, D. Candusso, X, Francoios, F. Harel,
 A. DeBernardinis, J.M. Kauffman and G. Coquery : *Fuel Cells*, 7, 47(2005)
- 3) M. Arita : Fuel Cells, 2, 10(2002)
- 4) 電気化学会:電気化学測定マニュアル 実践編, P121(2002), 丸善
- 5) 電気化学会:電気化学測定マニュアル 基礎編, P95(2002), 丸善
- 6) Kikusui : SAWS, 21, 8(2003), KIKUSUI
- 7) 板垣昌幸:電気化学インピーダンス法, P63(2008), 丸善
- 8) 田村英雄:電子とイオンの機能化学シリーズ, 4, P41(2003)
- 9) 鈴木正史:愛知県産業技術研究所研究報告,7,6(2008)
- 10) 電気化学会:電気化学測定マニュアル 基礎編, P96(2002), 丸善
- 11) M. Itagaki : 表面技術, 58, 153(2007)