研究論文

銅合金鋳物の機械的特性に関する鋳造 CAE による考察

津本宏樹*1、廣澤考司*1、永縄勇人*1、藤波駿一朗*1

Study on Mechanical Property of Copper Alloy Casting Applying CAE

Hiroki TSUMOTO^{*1}, Kouji HIROSAWA^{*1}, Hayato NAGANAWA^{*1} and Shunichiro FUJINAMI^{*1}

Industrial Research Center^{*1}

同一溶湯、同一型内で作製された銅合金鋳物(CAC406)の引張試験片について、その機械的特性(引張強 さ、伸び)の傾向が部位によって異なる要因を検討した。顕微鏡観察によると、部位によって凝固組織が 異なっており、これが鋳造欠陥の発生状況や負荷時の亀裂生成、進展に影響したものと考えられる。鋳造 CAE 解析を実施したところ、局部的な溶湯の滞留が見られ、これが凝固組織相違の要因となった可能性 が示唆された。

1. はじめに

鋳造は金属材料の成形や加工法の中でも、精密で複雑 な形状への適用が可能であり、製品サイズや重量の制約 も少ないといった優れた特徴を持っている¹⁾。鋳造は、 溶けた金属を型に注入し、冷やすことで目的の形状を得 る加工法であるが、液体から固体への相変態を伴いなが ら素材と形状を同時に作るプロセスであるため、現象が 複雑で多数の影響因子が存在する²⁾。このため、鋳物製 品の品質向上や欠陥対策を進めるにあたっては、これま での経験に頼る場面が多くあった³⁾。

その一方で、計算機の性能向上や低価格化を背景に、 パーソナルコンピューター上でプロセスの可視化ができ る鋳造 CAE が普及しつつある。直接的には観察できな い型内部の溶湯の流れや凝固プロセスの予測が可能なた め、型設計や不良対策などの目的で活用が進められてい る⁴⁾。

本研究では、銅合金鋳物を対象に、同一溶湯、同一型 内で作製された引張試験片の機械的特性に差異が生じる 要因について、実サンプルの評価と鋳造 CAE 両面から 検討を行った。

2. 実験方法

2.1 引張試験片の作製

鋳物材質は CAC406 とした。約 1200℃で管理された 溶解炉から溶湯を取鍋に移し、手作業で砂型内に注湯し た。これを常温となるまで十分に放置した後、砂型をば らして素材を取り出し、機械加工を行うことで、2 本の 引張試験片(JIS Z 2241 4 号試験片)を作製した。この2 本の引張試験片について、湯口、堰から遠い側の試験片 をA、近い側をBと識別する。鋳込み後の素材と引張試 験片の位置関係を図1に、加工後の引張試験片を図2に 示す。なお、鋳込み素材の大きさはL317×W76× H107mm(湯口、堰部分を除く)であり、引張試験片の平 行部に相当する部位における機械加工前の素材径は φ20.5mmとなっている。

図1 素材と引張試験片位置

試驗片平行部

図2 加工後の引張試験片

2.2 サンプル評価

作製した引張試験片A、Bについて、JISZ2241によ る引張試験を行い、引張強さと伸びを算出した(試験本 数 A:47 本、B:46 本)。引張試験には万能試験機((株)島 津製作所製AG-100kNIS)を用い、引張速度は5mm/min とした。また、破断後の引張試験片について、表面及び 破断部近傍の断面観察をデジタル顕微鏡((株)キーエン ス製 VHX-8000)、電子顕微鏡(日本電子(株)製 JSM-6510A)により行った。また、機械加工前の素材の凝固 組織の観察も行った。組織観察には、硝酸・塩化第二鉄 水溶液をエッチング液として用いた。

2.3 鋳造 CAE 解析

図 1 の鋳造方案を 3D モデル化し、鋳造 CAE 解析を 行った。解析ソフトとして、ADSTEFAN((株)日立産業 制御ソリューションズ製)を使用した。解析モデルと主 な解析条件を**図 3** と**表 1**に示す。

図3 鋳造 CAE モデル

表1 解析条件

材料	鋳物:CAC406
	鋳型:生砂(green sand)
初期温度	鋳物:1150℃
	鋳型:20℃
熱抵抗値	$50 \mathrm{cm}^2 \cdot \mathrm{sec} \cdot \mathrm{deg/cal}$
(鋳物-鋳型)	
メッシュサイズ	2mm
	(メッシュ数 : 約 200 万)
ソルバ	高精度湯流れ
	(MARS 法)
注湯速度	110cm ³ /sec
	(注湯所要時間より逆算)
フィルター	0.001
透過要素	

図3の鋳造 CAE モデルにおいて、カップ要素を設定 することで、設定の注湯速度を超えない範囲で、溶湯が 注入口から溢れないよう自動的に流量が調整される。ま た、フィルター要素は実際の注湯工程において異物等を 除去する目的で使用されるセラミックフィルターを模擬 した要素である。材料の各物性値についてはソフトウェ ア推奨値を使用した。 これらのモデルと解析条件により湯流れ、凝固解析を 行った。また CAE 解析モデルにおいて、引張試験片 A、 B 平行部の長手方向中央部の断面内に各 5 箇所の計測点 を設定した(図 4)。

3. 実験結果及び考察

3.1 引張試験結果

作製した引張試験片の伸びと引張強さの分布を図5に 示す。1回の注湯で、同一の溶湯、同一の鋳型から引張 試験片がA、B各1本ずつ作製されるが、図5よりその 物性値に傾向が見られることが分かる。引張強さ、伸び ともにAの方が良好な結果となっていた。

3.2 顕微鏡観察結果

引張試験後の試験片 A、B の平行部について、デジタ ル顕微鏡による表面観察を行った結果を図6に示す。A に比べてBの方が試験片表面の凹凸が細かく、拡大する とBの方に多数の微小亀裂が見られた。

次に、引張試験後の試験片 A、B について、破断部の 近傍で平行部を切断した後、その切断面を研磨し、電子 顕微鏡で観察した結果を図7に示す。A では切断面中央 部に比較的大きな引け巣が見られたのに対し、B では全 体に微小な欠陥が分布していた。図7の素材部における 切断面の拡大像を図8に示す。白い部分は主として材料 に含まれる鉛成分が凝固したものである。この部分が A では丸みを帯びた形状をしているのに対し、B では細長 く伸びたような伸長状となっていた。

機械加工前の素材の凝固組織を図9に示す。観察面は、 引張試験片A、Bの平行部において、長手方向に対して ほぼ中央位置を切断面とした。これによると、A、B で 凝固組織が明らかに異なっており、A は柱状晶、B は等 軸晶を主体とする組織となっていた。

図6 引張試験後の試験片表面のデジタル顕微鏡像

図7 破断部近傍断面の電子顕微鏡像 (囲みは確認された欠陥部)

図8 破断部近傍断面の電子顕微鏡像(素材部)

図6~図9の顕微鏡観察結果から、Aの方が引張強さ、 伸びが共に高い傾向となった要因は、次のように推定さ れる。Bは内部欠陥が断面全体に分布し、母材に比べて 強度が低い鉛組織が伸長状に分布していることから、A に比べて負荷時の亀裂発生、進展がしやすくなり、結果 として引張強さ、伸びの値が低くなったものと考えられ る。Bの表面に多くの微小亀裂が発生していたのもこの 影響だと考えられる。また、Bの凝固組織は微小欠陥が 断面内に生じやすいとされる等軸晶となっていた ⁵こと から、AとBの凝固組織の違いに起因して、このような 機械的特性の傾向が生じたと考えられる。

3.3 鋳造 CAE 解析結果

湯流れ解析による注湯完了時点(t=7.62s)での溶湯温 度分布を図 10 に、凝固解析による各計測点での流動限 界固相率温度時の温度勾配と冷却速度をそれぞれ図 11、 図 12 に示す。図 10 より、注湯完了時点での溶湯温度は B の方が低くなっていたが、温度勾配や冷却速度につい ては、同一断面内での差はみられるものの、A、B 間で の差はあまり見られなかった。

次に計測点断面における凝固組織予測結果を図 13 に 示す。図 13 では A、B ともに柱状晶が形成される結果 となった。図 9 と比較すると、A に関しては凝固組織の 特徴をよく再現していたが、B に関しては一致しない結 果となった。

図10 溶湯温度(t=7.62s)

凝固組織の形成には凝固時の温度勾配や冷却速度が影響する⁶⁾が、A、B間の差があまり見られず、CAEによ

る凝固組織予測でも共に柱状晶を示したことから、Bの 等軸晶形成には CAE 解析上では考慮されていない別の 要因が作用していると考えられる。

図13 CAE による凝固組織予測

等軸晶の形成については、過去に様々な研究がなされ ている。例えば、冷えた鋳型に溶湯が接触した際に結晶 核が生成し、溶湯の流れによって運ばれた先で結晶が成 長する説(自由チル晶説)や、鋳型壁上で生成した結晶が 離脱し、成長する説(結晶遊離説)などが報告されており、 これらは鋳込み時の湯流れや溶湯内の温度差による対流 が影響していると考えられている⁷⁰。一方、今回 CAE 解析にて用いた組織予測手法では、二次元断面内におけ る熱流のみを考慮したモデルとなっており⁸⁰、鋳型内の 三次元的な溶湯の流れの影響は考慮されていない。

ここで、Bにおける等軸晶形成の要因について検討す るため、鋳型内の溶湯の流れに関連する CAE 解析結果 に着目する。まず、各計測点における溶湯の存在時間を 図14に示す。どの計測点においても、その値は B の方 が大きくなっていた。このことから、B 側にはA 側と比 較して注湯初期の溶湯が主に存在していると考えられる。 次に計測点 3(試験片平行部の中心)を通る水平断面内に おける溶湯速度(t=7.18s)を図15 に示す。堰から溶湯が 流入する影響で、B 側の溶湯の流れが遮られ、溶湯が B 側に滞留する様子が観察された。

図 14 の結果も踏まえると、B 側には常温の鋳型に接 触しながら運ばれてきた注湯初期の溶湯が集積されてお り、ここには多数の結晶核や鋳型から遊離した結晶が含 まれていることが考えられる。よって、このような状態 で凝固が進行することで、BにはAの柱状晶とは異なる 等軸晶が生成した可能性が考えられる。

図15 溶湯速度(t=7.18s)

4. 結び

本研究の結果を以下にまとめる。

- (1) 引張強さ、伸びは A の方が高い傾向であった。
- (2) 引張試験後のサンプルにおいて、Bの表面に多くの 亀裂が見られた。またBの断面全体に鋳造欠陥と伸 長状の鉛組織が見られた。
- (3) 凝固組織はAが柱状晶、Bが等軸晶となっていた。
- (4) 鋳造 CAE の結果、B 側に注湯初期の溶湯が滞留し ていた。これが凝固組織や物性値の差に影響した可 能性が考えられる。

謝辞

本研究にあたり、引張試験片の作製、実験にご協力 いただいた有限会社冨士製作所に深く感謝いたします。

文献

- 1) 平塚貞人: 精密工学会誌, 84(5), 427(2018)
- 公益社団法人日本鋳造工学会編集委員会:基礎から 学ぶ鋳造工学,318(2015),公益社団法人日本鋳造工 学会
- 4山正孝: 鋳造技術の基礎, 序文(1978), 財団法人綜 合鋳物センター
- 4) 尾崎公一: アルトピア, 48(6), 9(2018)
- 5) 公益社団法人日本鋳造工学会編集委員会: 基礎から 学ぶ鋳造工学, 113(2015), 公益社団法人日本鋳造工 学会
- W.Kurz and D.J.Fisher: Fundamentals of Solidification, 88(1986), Trans Tech Publications
- (7) 岡本平,村上健児:日本金属学会会報,25(1), 42(1986)
- 8) 株式会社日立産業制御ソリューションズ: ADSTEFAN Ver.2021 ヘルプ