研究論文

ロボット要素技術としての可変自重補償機構(免荷装置)

木村宏樹*1、酒井昌夫*2、竹中清人*2

Development of Variable Gravity Compensation Mechanism for Robotics Elemental Technology

Hiroki KIMURA^{*1}, Masao SAKAI^{*2} and Kiyoto TAKENAKA^{*2}

Industrial Research Center^{*1*2}

ロボットの本質安全につながる要素技術として、対象物の重量をバネの弾性力で支える(自重補償)機 構を提案している。本機構は、形状を工夫したカムにより一定の支持力を発現し、対象物の重量に応じて 支持力の調整が可能であることを特徴とする。本研究では、機構の支持荷重特性を評価し、明らかになっ た支持荷重誤差(非定荷重、ヒステリシス特性)について、その要因と改善方法について考察した。幾何 計算に加え数値計算による手法を導入し、理論モデルを再構築すると共に、機構の設計パラメータを最適 化することで、支持荷重特性が向上できることを示した。

1. はじめに

自動車部品や家電・情報機器などの生産ラインや医 療・介護の現場などにおいて、人とロボットが協調して 作業をすることが期待されている。このような場では法 規制による安全確保が重要で、産業用ロボットでは労働 安全衛生規則第150条の80W規制の解釈が見直され、 生活支援ロボットでは国際安全規格 ISO13482 が発行さ れたところである。ロボットの安全方策として、搭載す るアクチュエータの低出力化は本質安全につながる。

セル生産方式の普及などにより、人とロボットが協調 して作業する工程の構築が期待されている。このような 場では、安全面からロボットの低出力化が求められる。 しかし、低出力化は作業対象である部品を軽量なものに 制限し、ロボットが担える作業を減らすことになる。

この課題を解決する方法の一つとして、作業対象の重 量をロボットではなく、別の装置で免荷する方法が考え られる。工場での作業者の負担軽減、作業の効率化を目 的として、バランサーや専用機など対象物の重さを免荷 する装置が利用されている。しかし、これらの多くは、 単一の重量物のみを免荷することを目的とするものが多 く、また、電動式やエアー式のアクチュエータを搭載し たものである¹⁾。セル生産ラインのように、複数の部品 を扱う工程では、それぞれの部品の重量に対して免荷で き、また、安全面から低出力(無動力)であることが求 められる。我々の提案する可変自重補償機構は、対象物 の重量をバネの弾性力を利用して免荷するもので、形状 を工夫したカムを用いることで、対象物を定荷重で支持

するものである。また、簡単な調整により支持力の調整 が可能である。これまで機構が満たすべき関係式を明ら かにするとともに、異なる重量物に対して支持力の調整 が可能であることを幾何計算により示してきた²⁾。図1 は、提案する可変自重補償機構を岐阜大学 川崎・毛利研 究室が開発する「床上で利用可能なリハビリ支援システ ム」の腕や機構の重量を免荷する装置に適用した例であ る(以下、現行機)。現行機では、荷重支持が可能である ことを示す一方、支持力に誤差が大きいことが課題とし て挙がった。

本研究では、現行機の支持荷重特性を評価し、課題で ある支持力誤差の要因を特定すると共に、提案する可変 自重補償機構を要素技術として向上させることを目指す。

図 1 可変自重補償機構(現行機)概観

*1 産業技術センター 自動車・機械技術室(現産業労働部 産業振興課)

*2 産業技術センター 自動車・機械技術室

項目	内容	設計値
m	対象物の質量	1.9[kg]
m_2	平行リンク機構部質量	1.4[kg]
m3	支持機構部質量	2.0[kg]
m_4	11	4.0[kg]
g	重力加速度	$9.8[m/s^2]$
l_2	平行リンク機構部長さ	319.5[mm]
l_{2g}	〃重心位置	192.0[mm]
13	支持機構部長さ	280.0[mm]
X_p	プーリ位置	37.0[mm]
Y_p	11	75.0[mm]
θ_2	J2 関節角度	-
d	カム径	45.5[mm]
θ_{0}	カム角度	45.0[deg]
K	バネ定数	13.5[N/mm]
f_{0}	バネ初張力	110.1[N]

図2 可変自重補償機構のモデル図

2. 可変自重補償機構の原理

可変自重補償機構のモデルを**図2**に示す。本機構は、 対象物を保持する支持機構部と平行リンク機構部、バネ、 カムで構成される。支持機構部に荷重が作用すると平行 リンク機構部が傾き、カムが回転し、ワイヤーを介して 引っ張られるバネの弾性力により対象物を支持する。平 行リンク機構部により、支持機構部は常に水平が保たれ、 併せてカムの形状を工夫することで、機構の姿勢によら ず常に一定の荷重で対象物を支持することができる。固 定位置調整ネジにより、平行リンク機構部の位置を調整 することで支持荷力の調整が可能である。バネ伸び量調 整機構部でバネの初期伸び量を変更でき、支持力の微調 整ができる。また、機構の各関節は受動関節であり、対 象物の水平・垂直方向の動きを妨げない。

対象物の自重により、関節 J₂に作用するトルク τ_{g} (式 (1)) とバネの弾性力によるトルク τ_{K} (式(2)) が、関節 J₂の角度 θ_{2} に依らず釣り合えば、対象物を常に定荷重で 支持する(自重補償)ことができる。式(1)、(2)中の $r(\theta_{2})$ はカムの径、 $x(\theta_{2})$ はバネの伸び量であり、式(3)、(4) で与えられる。釣り合い条件は、幾何計算により式(5)、 (6)のように求められる。

$$\tau_g = \{(m + m_3 + m_4)l_2 + m_2l_{2g}\}g\cos\theta_2 \quad (1)$$

$$\tau_{K} = K\{x(\theta_{2}) + x_{0} + f_{0}/K\}r(\theta_{2})$$
(2)

$$r(\theta_2) = d\cos(\theta_2/2 + \theta_0) \tag{3}$$

$$x(\theta_2) = \int_{-\pi}^{\theta_2} r(\vartheta) d\vartheta \tag{4}$$

$$l_2 = (Kd^2/g - m_2 l_{2g})/(m + m_3 + m_4) \quad (5)$$

$$x_0 = 2d\sin(-\varphi/2 + \theta_0) - f_0/K$$
(6)
(II) $\theta_1 = \pi/4$

リンク長さ I2、バネの初期伸び量 xoが式(5)、(6)を満 たす時、自重によるトルク tg とバネによるトルク tKが 釣り合う。また、対象物の自重 mに合わせてリンク長さ I2を式(5)に基づき調整することで、支持荷重の調整が可 能である。

3.可変自重補償機構の 支持荷重特性

現行機の支持荷重特性を評価するため、支持力の計測 を行った。図3に示すように、万能試験機((株)島津 製作所 AG-100kNE型)を用いて、機構を引っ張り・戻 す(加荷・除荷)サイクル動作を行った。機構の先端に ロードセル、ワイヤーを取り付け、プーリを介して万能 試験機により定速度で加荷・除荷する。その間のロード セルの出力値を PC に取り込み支持力を計測した。機構 の関節角度は、デジタルカメラにより動画撮影をし、高 速度カメラシステム(フォトロン(株) HV-W modelA) を用いて関節部に貼付したマーカーをデジタイズ処理 (画像処理)することで計測した。それぞれの測定周期 は 300msとし、LED の発光により同期処理をした。

測定結果を図4に示す。測定結果から、設計上得られ る理論値と一致せず、目標である定荷重ではなく非定荷 重(誤差約2kgf)となっていることが分かった。また、 加荷時と除荷時において、支持荷重が一致しないヒステ リシス特性があることが分かった。

4. 誤差要因と理論モデルの再構築

非定荷重かつヒステリシス特性を示した要因として、 ①幾何計算におけるモデルの簡単化による影響、②カム 形状の誤差による影響、③バネ、ワイヤーの特性に

図3 可変自重補償機構の支持荷重測定

よる影響が考えられる。以下、それぞれについて検証する。

4.1 幾何計算の簡単化による誤差(非定荷重)

2章で本機構の原理を紹介し、機構が満たすべき条件 を求めた。この際、幾何計算の簡単化のため、カムとワ イヤーは特定の位置 90°で接すると仮定した。しかし、 カムの径は一様でないため、ワイヤーが接する位置は一 意でない。ワイヤーの接点が変われば、ワイヤーの巻取 量すなわちバネの伸び量、J2関節中心からの距離である モーメントアームも変わる。従って、バネによるJ2関節 に作用するトルクの大きさも変わることになる(図5)。 そこで、ワイヤーがカムと接する位置を数値解析により 厳密に求め、真のモーメントアーム、ワイヤーの巻取量 を求めた。

4.2 カム形状による誤差(非定荷重)

使用したカムは式(3)に基づき設計した。カム形状を三 次元測定機で測定し、設計値照合によりその形状誤差を 検証した。結果を図6に示す。カムは一部摩耗と考えら れる形状崩れがあるものの許容誤差範囲の形状(輪郭度 500µm以下)となっていることを確認した。

4.3 ワイヤー、バネの特性による誤差(ヒステリシス)

ヒステリシス特性の要因として、ワイヤーの伸びが疑われるため、引張試験機によりその特性を評価した。

図6 カム形状の測定結果

併せてバネの特性評価も行った。ワイヤーの引張試験結 果を図7に示す。ワイヤーの長さは360mmとし、機構に 使用しているものと同一にした。荷重を加えることによ り、ワイヤーには伸びが生じ、また、除荷の際、加荷時 に生じた伸びが残存し、加荷と除荷において同一荷重を 加えても伸び量が異なるヒステリシス特性があることが 確認できた。バネについては、ヒステリシス特性は見ら れず、初張力以上の荷重においては荷重と伸びの関係は、 仕様どおり線形であった。

4.4 理論モデルの再構築

現行機の支持荷重誤差は、幾何計算の簡単化による誤 差とワイヤーのヒステリシス特性が主な要因と考えられ る。そこで、カムとワイヤーの接触位置を数値解析によ り厳密に求めるとともに、ワイヤーの特性を加荷と除荷 に分けてそれぞれ数式化して理論モデルに盛り込んだ。 その結果、図8に示すように支持荷重は非定荷重となり、 加荷と除荷で荷重が異なるヒステリシス特性を示した。 図4で示した測定値と同様な傾向が確認できた。

5. 最適化計算による設計(誤差低減)

現行機の支持荷重の測定値に生じた誤差について、理 論モデルにワイヤーとカムの位置関係とワイヤーの伸び を考慮することで説明することができた。しかし、対象 物の自重を補償するためには、支持荷重は定荷重である 必要がある。非定荷重となった要因は、カムとワイヤー の接触位置の他に、プーリの位置が影響すると考えられ る。そこで、定荷重を実現するため、最適なプーリ位置 を求めた。機構の各姿勢(関節角度)における支持荷重 誤差の総和を最小とする式(7)を評価関数とし、プーリの 位置(*Xp*, *Yp*)の最適値を求めた。なお、式(7)中の *ei(θ)* (i=1,2)は、J₂関節角度 θにおける加荷、除荷時の支持荷 重誤差である。

$S = Min[\sum_{\theta} \{e_1(\theta) + e_2(\theta)\}]$ (7)

結果を**図9**に示す。プーリ位置を最適化することで、 支持荷重誤差を低減できることが分かる。しかし、ヒス テリシス特性により、±0.4kgf 程度の誤差が生じた。ヒ ステリシスの要因はワイヤーの伸びであることから、伸 びのない部材を使用したと仮定し、併せて、プーリの位 置(*Xp、Yp*)、カム径 *d*(リンク長さ *l*₂に依存)の設計 パラメータを式(7)の評価関数に基づき最適化し、計算し た結果を**図10**に示す。このことから、ヒステリシスの ないワイヤーを使用することで、定荷重を実現できるこ とが示唆された。

6. 結び

提案する可変自重補償機構について、支持荷重特性を 評価し、ヒステリシス・非定荷重特性とその要因を明ら かにした。幾何計算に加え数値計算による手法を導入し、 理論モデルを再構築すると共に、機構の設計パラメータ

図10 ヒステリシスが無い場合の支持荷重誤差

を最適化することで、支持荷重誤差を低減できる可能性 があることを示した。

7. 謝辞

本研究を進めるにあたり、機構の支持荷重特性評価の ため岐阜大学 川崎・毛利研究室より現行機をお借りしま したこと、川崎特任教授・名誉教授、毛利准教授からご 助言いただきましたことに感謝申し上げます。

文献

- 村上英之,武居直行,松本邦保,鴻巣仁司,藤本英 雄:日本ロボット学会誌, 28(5), 624-630(2010)
- 2)木村宏樹,石槫康彦,毛利哲也,川崎晴久,伊藤聡, 西本裕,青木隆明:第23回バイオメカニズムシンポ ジウム予稿集,291-297(2013)