研究論文

X線 CTを用いた測定寸法の精度評価

山本紘司*1、水野和康*1、島津達哉*1、児玉英也*1

Evaluation of the Length Measured by X-ray CT

Koji YAMAMOTO^{*1}, Kazuyasu MIZUNO^{*1}, Tatsuya SHIMADZU^{*1} and Hideya KODAMA^{*1}

Industrial Research Center^{*1}

当センター設置のマイクロフォーカス X線 CT 装置を用いて、三次元形状測定に利用した場合の寸法誤差の評価を行った。測定対象物には、アルミまたはプラスチック製の球および円柱を使用した。撮像条件を調整しアーチファクトやノイズを低減することにより、おおむね 60µm 以下の誤差で測定することができ、実用的な形状測定への活用の可能性を示すことができた。

1. はじめに

3D-CAD や 3D プリンタをはじめとし、ものづくりの デジタル化が急速に進んでいる。その中で三次元デジタ イザに対するニーズは年々増加している。従来は、ステ レオカメラやレーザ方式の装置が用いられてきたが、測 定物の色や表面性状に影響を受けやすく、表面に現れな い内部形状や、光やレーザの当たらない入り組んだ形状 を測定できなかった。そこで、近年注目されているのが X線 CTを用いた非破壊測定技術である。X線 CT は、 物体を様々な方向からX線で撮影した画像を再構成処理 することで、物体の内部構造を含む三次元の CT 画像を 得ることができる 1)。この特徴を利用して主に内部構造 や欠陥の観察に利用されてきたが、最近では寸法測定や 三次元デジタイザとしての期待が高まっている。しかし、 CT 画像にはアーチファクト(実際と異なる疑似画像) やノイズが含まれ、データの欠落など不確定要素が多く、 適切な撮像条件も試行錯誤の段階である。当センターに おいても、X線 CTを使用する機会が増加し、測定デー タの特性把握及び測定精度の明確化が求められるように なった。そこで、本研究では当センター既設のマイクロ フォーカスX線CTの測定精度検証を行った。

2. 実験方法

X線CTを用いて形状測定する場合、精度に影響する
要因には以下の事象が考えられる²⁾。
(1)X線CT装置や撮像条件による因子

・X線管電圧、管電流、X線源-試料-検出器位置関係 ・ビームハードニング、アーチファクトの影響など

(2)試料による因子

*1 産業技術センター 自動車・機械技術室

材質(鉄鋼材料、アルミ、プラスチックなど)

・厚み、形状、姿勢、測定位置

(3)ソフトウェア技術による因子

・2 値化閾値(試料と空気層の分離)の設定

・最終データ形式、データ変換処理プロセス

本報告では、試料による因子を中心に報告する。具体 的には X 線源・試料間と試料・検出器間をそれぞれ 500mm に固定し、X 線透過率により管電圧、管電流を 決定し、縮尺補正、2 値化閾値、ビームハードニング補 正(以下 BHC とする)という条件調整をして、実際の 測定を行う。

本研究に使用した株式会社島津製作所製「マイクロフ オーカス X 線 CT(SMX-225CT)」の仕様を表1に示す。 また、X 線 CT の内部構成は図1のとおりである。透過 像からボリュームデータへの再構成は CT 装置、ボリュ ームデータの解析、STL 変換は VGStudioMAX2.1

表1 X線CTの仕様

X線管電圧	$30\sim 225 \mathrm{kV}$
X線管電流	$0 \sim 1000 \mu$ A
	イメージインテンシファイア
X線検出器	(I.I カメラ)9/7.5/6/4.5 インチ
	4段可変視野
搭載可能	直径 300×高さ 300mm
サンプル	重量 9kg
CT 撮像視野	直径 5~200mm
線源·検出器間距離	400、600、800、1000mm
フィルタ	Cu 及び Al 0.5、1.0、2.0

(VOLUME GRAPHICS 社製)、STL データからの寸 法評価は GOM Inspect (GOM 社製)を使用した。

2.1 管電圧、管電流の検討

検出器の最高輝度を 100%とした場合、適正な X線 CT 像を撮影するためには、検出感度として輝度は 5~10% 以上必要とされている³⁾。そこで、装置に標準搭載され ているアルミ合金およびプラスチック製ファントム(**図** 2)を用いて、ファントムの当該部位における輝度を測 定し、検出器の最高輝度との比率で表して、測定試料の 厚みに対する管電圧、管電流を決定する条件とした。フ ァントムは 10mm から 120mm まで 10mm ずつ増加す る 12 段の階段形状であるが、0mm (空気層)から 60mm までを測定対象とした。X線源・試料の距離を 500mm、 試料・検出器の距離を 500mm、管電圧、管電流を調整し て、輝度が 5%以上になる条件を検討した。

2.2 縮尺補正値の検討

X線 CT を用いた測定では、X線源・測定試料・X線検出 器の位置関係により透過像が拡大/縮小するため、それら の位置決め精度による測定誤差が生じる。そこで、図3 に示すアルミ製の台に三次元測定機用の2本のスタイラ ス(ルビー球、カーボンシャフト)を配置した縮尺補正 用ゲージを用い、三次元測定機による実測値とX線 CT による測定値から補正値を求めた。なお、補正値はXY 平面内で求め、これをZ方向にも適用した。

2.32値化閾値の検討

X線CTで撮影した像はグレースケールで表現される。 試料と空間の境界で段階的に濃度が変化するため、ボリ ュームデータを断面データに変換する際の、2 値化閾値 により境界が移動する。 φ 20 のアルミ球、 φ 25.4 のプ ラスチック球を用いて、2 値化閾値を変化させ、その直 径を評価し、接触式三次元測定機で測定した値との差が 最小となる 2 値化閾値を決定した。

2.4 ビームハードニング補正(BHC)の検討

X線が試料を透過するとX線の長波長成分ほど減衰し やすいため、透過する試料厚さが増加するほど試料を透 過するX線は短波長側のより高いエネルギーに偏るビー ムハードニングを生じる。大きなビームハードニングを 生じた場合、均一試料であっても外殻部は高密度、中心 部は低密度な不均一試料として測定される。この影響を 補正するため、メーカー提供の BHC を利用し、アルミ 球、プラスチック球を測定した。

図2 階段状ファントム 図3 縮尺補正用ゲージ

2.5 最適条件での測定

以上で得られた最適測定条件及び補正を用いて、アル ミまたはプラスチック製の球および円柱を各3回測定し、 接触式三次元測定機で測定した値を真値として誤差を評 価した。測定する試料はアルミ球(φ10、20、30mm)、 プラスチック球(φ16、25.4、50.8mm)、アルミ円柱(φ5、 10、15、20、25、30mm)、プラスチック円柱(φ8、10、 15、20)とした。

3.実験結果及び考察

3.1 管電圧、管電流の検討

アルミ合金およびプラスチック製の階段状ファント ムを測定試料として、管電圧を140kVから200kVまで、 管電流を20 μ Aから60 μ Aまで変化させたときの試料 厚さによる輝度の影響を評価した。アルミ合金及びプラ スチックの試料厚さと輝度の関係を図4、5に示す。実 験条件下では、管電圧、管電流ともに大きくした場合に 輝度が高くなった。また、試料厚さが大きくなるにつれ て、アルミ合金では指数関数的に輝度が減少するのに対 し、プラスチックでは比例的に輝度が下がる傾向が見ら れた。適正なCT像を撮影するため、測定試料の厚さに 対し、輝度が5%以上となるように管電圧、管電流を調 整した。具体的には、アルミ試料(30mm以下)測定は、 管電圧 200kV、管電流 60 μ Aとし、プラスチック試料 (50mm 以下)測定は、管電圧 200kV、管電流 40 µ A として、その条件で以降の測定を行った。

図5 試料厚さと輝度の関係(プラスチック)

3.2 縮尺補正測定

24

2値化閾値と $\phi 4 \mu \forall - \pi \sigma \pi a$ (本) の関係を図6、7に示す。2値化閾値を 20%~80%まで 変動させると、直径測定値は 4mm を境界にして ±400 μ m変化するが、球間距離は変化しなかった。この ことより、閾値に関係なく一律に縮尺補正値を設定する ことができた。ここでは、三次元測定機で測定した球間 距離が 19.938mm で、X線 CT で撮影した球間距離が 19.989mm であるため、前者を後者で除した値 0.997 を 縮尺補正値とした。

図6 2値化閾値とルビー球の直径測定値の関係

3.32値化閾値による測定

 $\phi 20$ のアルミ球、 $\phi 25.4$ のプラスチック球を用いて 2 値化閾値と縮尺補正を実施した後の球直径測定誤差の関係を図8に示す。2値化閾値を変化させると、誤差 0mm を境界にして、およそ $\pm 500 \mu$ m の誤差が生じ、45%付近 で誤差が最小となった。このことより、2値化閾値を45% にしたときが妥当と考えられる。

3.4 BHC による測定

2値化閾値を 45%にして、BHC ありの場合と BHC な しの場合での球の呼び径と球直径測定誤差の関係を**図 9**に示す。試料は ϕ 10、20、30 のアルミ球である。直 径が小さい場合は誤差が少ないため、BHC の効果があ まり認められないが、直径が大きくなるにつれて BHC なしでは誤差が拡大し、BHC ありの場合は比較的誤差 が小さく、顕著に BHC の効果が読み取れる。

3.5 **最適条件での**測定

上述の装置条件、撮像条件でアルミやプラスチック素 材の球状及び円柱形状を測定した。その結果を図10、 図11に示す。アルミでは30mm、プラスチックでは 50mm以下の試料に対し、接触式三次元測定機で測定し た結果との誤差が±60µmの範囲に収まった。

図10 呼び径と球直径測定誤差の関係

図11 呼び径と円柱直径測定誤差の関係

4. 結び

マイクロフォーカス X線 CT を用いて、球、円柱形状 の対象物の外形を測定し、以下の結果を得た。

- (1)2 値化閾値を 45%にしたとき、測定誤差が最小となった。
- (2) BHC ありで X 線 CT 撮影を行うと誤差が少ない。
- (3) 最適な撮影条件を選択することで、誤差 60 μ m 以下 の測定結果が得られた。

文献

- 1) 紋川亮,中川朋恵,金城康人,桜井昇,永川栄泰,藤 井恭子,横山幸雄:東京都立産業技術研究センター 研究報告,7,26(2012)
- 2)金子奨,青木義満,滝 克彦:映像情報メディア学会 技術報告,**31**(14),17(2007)
- 3)相山英明,田中大之,万城目聡,片山直樹,宮腰康樹, 高橋英徳,中嶋快雄,金井理,伊達宏昭,溝口知広, 北原総一郎,根本英希:北海道立総合研究機構工業 試験場報告,**311**, 39(2011)