研究ノート

測温によるレーザ焼入品質管理手法の検討

津本宏樹*1、古澤秀雄*2、斉藤昭雄*3、花井敦浩*1

Examination of Quality Control Method in Laser Hardening

Hiroki TSUMOTO^{*1}, Hideo FURUZAWA^{*2}, Akio SAITO^{*3} and Atsuhiro HANAI^{*1}

Industrial Research Center^{*1~3}

レーザ焼入れにおいて、焼入品質を予測することを目的に、レーザ照射時の試験片の表面温度を放射温 度計により測定し、硬さとの相関を調べた。その結果、測定温度と焼入れ深さに相関があることを見出し た。また、残留応力測定の結果、硬化部の圧縮応力のほか周辺部には引張応力が確認された。

1. はじめに

レーザは出力や集光面積の調節が容易であり、短時 間に局所的な加熱が可能なことから、近年、切断、溶接 など、加工分野への適用に関する研究が盛んに行われて いる。熱処理の分野においても、熱歪みが少ない、複雑 形状への適用が可能、工程がクリーンなどのメリットが ある。

レーザ焼入れを行う際には、レーザ出力、走査速度 などの条件を設定しているが、照射条件が自由に設定で きるため、結果として被処理物に対して、どのような焼 入れが行われたかの予測が困難である。

そこで、本研究ではレーザ焼入れにおける品質予測 を目的に、レーザ照射時の試験片の表面温度を放射温度 計により測定し、測定温度とレーザ照射条件、および硬 さとの相関を調べた。また、レーザ焼入れにおける残留 応力の分布についても調べた。

2. 実験方法

2.1 実験システム

実験システムの概要を図1に示す。レーザは、最大 出力 4000W のディスクレーザ(Trump 社)を使用し た。このディスクレーザは媒質に Yb:YAG ディスクが 使われており、冷却機能があることから、熱レンズ効果 を抑えた高品質なレーザの連続使用が可能である。レー ザ光は 15×1mm のライン状に成形されおり(焦点距離 320mm)、試験片(50×50×20mm)には、表面を研削 した機械構造用炭素鋼(S45C)を用いた。また、レーザ 照射面は試験片表面とし、焦点距離と同一とした。放射 温度計は、レーザ照射軌跡上を撮影するように設定し、 温度ピーク値を記録した。なお、酸化防止のためのシー ルドガスは今回使用せず、O2雰囲気とした。

図1 実験システム

2.2 実験条件

レーザ出力と走査速度をパラメータとし、9 種類のレ ーザ照射条件にて実験を行った。実験条件を表1に示 す。この表において、出力が高く、走査速度が遅い、実 験条件1が、レーザ照射により発生する熱量が最も高く なると考えられる。

2.3 放射率の設定

測温に使用する放射温度計の放射率 ε の設定について は、予備実験として、小型電気炉内にて加熱した試験片 を放射温度計により測定し、炉の設定温度と一致する ε=0.21 とした。

*1 産業技術センター 金属材料室 *2 産業技術センター 金属材料室(現産業労働部 産業振興課) *3 産業技術センター 金属材料室(現企画連携部 企画室)

45

3.実験結果と考察

3.1 組織と測温結果

実験条件 2,3,6 におけるレーザ照射後の試験片の外観、 断面組織、測温結果を図2に示す。断面組織からは、 それぞれ表面部に硬化層(マルテンサイト層)が生成し ており、レーザ焼入れが行われたことが確認できた。ま た、出力が一定の条件下では、レーザ走査速度が遅いほ ど、硬化層は深く、測定温度も高い値を示した。

3.2 硬さと温度相関

実験条件 2,3,6 における断面硬さ分布を図3に示す。 実験条件により、硬さ分布は異なるが、硬化層の最高硬 さは、いずれの条件も S45C 材の最高硬さに相当する約 700HV であった。

一方、断面硬さの分布は、走査速度と相関があり、入 熱量が大きくなる条件で、温度が高いものほど内部まで 硬化していることが分かった。

図3 断面硬さ分布(条件 2,3,6)

図4 測定温度と有効硬化層深さの関係

さ(硬さが 450 HV となる表面からの距離)と、温度と の関係を図4に示す。温度と有効硬化層深さの関係は、 ほぼ直線の相関が得られた。このことは、放射温度計に よるレーザ照射部の温度測定結果から、有効硬化層深さ が予測できることを示唆している。

3.3 残留応力分布

実験条件 3 の試験片について、残留応力分布を調べ た。その測定位置を図5に、測定結果を図6に示す。 レーザ走査線上の A,B においては、表面近傍に圧縮応 力がみられた(図2断面写真における硬化層にほぼ一致 する)が、更に深い位置では、引張応力となっていた。 また境界部 C では表面近傍から引張応力がみられた。 未処理部 D の応力がほぼ 0 であったことから、これら の引張、圧縮応力はレーザ焼入れにより付与されたもの であると考えられる。

このことから、レーザ焼入れによる硬化層には圧縮応 力が付与されるものの、その周辺部には硬化層より広範 囲に引張応力領域が存在するため、実際の製品に処理を 行う際には、レーザ照射条件の設定に注意が必要である。

4. 結び

今回、レーザ焼入れにおいて、温度という指標を導入することにより、レーザ照射部の測温結果と焼入品質 との相関性を示唆することができた(測温結果の絶対値 については、放射率の設定など、今後も検証を要する)。 今後は、他条件、他材料などでも実験を行い、データの 拡充に努めたい。

謝辞

本研究にあたり、レーザ焼入れ試験片の作製にご協 力いただいた(株)齋藤工業に深く感謝いたします。