電界紡糸法による酸化チタン NF の合成技術

1. はじめに

酸化チタンは光触媒性能を有することから、 環境負荷の低い材料として期待されていて、す でに有害物分解等の各種材料へ応用されていま す。そのため、触媒活性を高める取り組みも多 数なされています。それにはまず比表面積を高 めることが重要で、繊維径を極めて細くするナ ノファイバー(NF)化も、高活性化の一つの手 段として有効と考えられます。

ここでは、電界紡糸法を用いた酸化チタンNF の合成技術について紹介します。

2. 電界紡糸法による酸化チタン NF 合成技術

酸化チタンなど無機系 NF の合成においては、 主として電界紡糸法が用いられます。電界紡糸 法自体の歴史は古く、1930 年代から行われてお りましたが、酸化チタンに関する電界紡糸法に ついては比較的新しく、2000 年代になってから 報告が増えています。電界紡糸法による酸化チ タン NF 合成に関する報告例を**表**に示します。

これらの報告では、原料となる紡糸液合成方法は主に PVP (ポリビニルピロリドン) 等共存下でのゾルゲル法を基本としています。 PVP 添加は、主として紡糸に係る粘性制御を目的としています。

通常のゾルゲル法のみで紡糸液を作製した場合、得られた酸化チタン NF の比表面積は 50m²/g 程度ですが、初期状態で酸化チタンナノ 粒子を紡糸液中に存在させるか、ゾルゲル法の

溶液でも高湿度下で紡糸するなどの方法で比表面積を $100 \text{m}^2/\text{g}$ 以上に向上させることができます。ただし、粉末状酸化チタンでは比表面積 $300 \text{m}^2/\text{g}$ 程度の商品も市販されており、これと比べるとナノファイバーの比表面積はまだまだ低い値となっています。

当センターで合成した酸化チタン NF の透過型電子顕微鏡(TEM)像を図に示します。この像から示されたとおり、酸化チタン NF は粒子の集合体で、細孔はその隙間で形成されていると考えられ

図 酸化チタン NF の TEM 像

ます。表に示すように、先だって粒子を導入した紡糸液の方が得られたファイバーの比表面積が大きい事も、この構造と関連しているかもしれません。このことは、酸化チタン NF の比表面積をより高める指針となりうると考えられます。

3. おわりに

ナノファイバーは構造的に流体の低圧損効果もあり、これもまた触媒反応の高活性化に寄与できると考えられます。酸化チタン NF は現状ではまだ発展途上の研究開発テーマですが、高いポテンシャルを秘めた注目すべき材料と言えるでしょう。

#	毎田外々汁ル	トフ	亜色 リューエート	· /	N TTO	$\Delta \Delta \Delta$
衣	電界紡糸法に	46	酸化ナグ	/	NF	の合成

年	報告者	紡糸液合成方法	比表面積/m²·g ⁻¹	備考
2003	D.Li	PVP 共存下ゾルゲル法	-	繊維径 20-200nm
2008	C. Tekman	PVP 共存下ゾルグル法	_	繊維径 54-78nm
2010	信州大学	N含有有機物+ゾルゲル法	45	
2011	C. Wessel	TiO ₂ ナノ粒子+PEO	167	$\mathbf{PEO}: \mathbf{x}^\circ \mathbf{J}\mathbf{x}\mathbf{f}\mathbf{v}\mathbf{v}\mathbf{f}\mathbf{f}\mathbf{v}\mathbf{h}^*$
2019	ライプニッツ研究所	ゾルゲル法+水熱処理	102	
2019	P. Aghasiloo	高湿度 PVP 共存下ゾルゲル法	128	通常湿度比表面積 50m²/g

<u>三河繊維技術センター</u> 産業資材開発室 行木啓記 (0533-59-7146) **研究テーマ**:電界紡糸法による各種ナノファイバー合成に関する研究

担当分野:ナノ材料に関する研究、評価