研究ノート

FW 法による CFRTP パイプの圧縮強度評価

深谷憲男*1、原田真*1、茶谷悦司*2、松田喜樹*1

Compression Strength Evaluation of CFRTP Pipes Supply FW Method

Norio FUKAYA^{*1}, Makoto HARADA^{*1}, Etsushi CHAYA^{*2} and Yoshiki MATSUDA^{*1}

Mikawa Textile Research Center^{*1,2}

一束の炭素繊維束を巻き付けていく従来の FW 法(単給糸 FW 法)とうねりのない(ノンクリンプ)状態に 配向させた数十束もの繊維束を同時に巻き付ける FW 法(多給糸 FW 法)の異なる 2 種の供給法による FW 法を用いて CFRTP パイプを作製し圧縮強度評価を行った。その結果、単給糸 FW 法パイプと比較して、 多給糸 FW 法パイプは、弾性座屈が起きにくく、エネルギー吸収特性が優れている傾向となった。

1. はじめに

近年、CFRTP(炭素繊維強化熱可塑性樹脂)が注目されている。熱硬化性樹脂に比べて、量産性、2次加工性、 リサイクル性、成形時に化学反応を伴わないなどの点か ら、自動車用途としての利用が期待されている。

また、一般に CFRP(炭素繊維強化樹脂)の円筒形状 は、FW(フィラメントワインディング)法で製作されて いる。

一束の炭素繊維束を巻き付けていく従来の FW 法(単 給糸 FW 法)では、生産効率が悪いという問題があった。

そこで、生産性及び力学的向上を目的として、うねり のない(ノンクリンプ)状態に配向させた数十束もの繊維 束を同時に巻き付ける FW 法(多給糸 FW 法)の研究開発 ¹⁾がされている。

本研究では、構造部材の CFRTP の生産技術開発の一 環として、これらの異なる2種の供給法による FW 法を 用いて CFRTP パイプを作製し、圧縮強度評価を行った。

2. 実験方法

2.1 材料

材料は、ナイロン繊維(LEXTER8500、三菱ガス化学 (株)製)と炭素繊維(TR50S-12k、三菱ケミカル(株)製)を 混繊し、半含浸させたコミングルヤーン(1334dtex、 Vf:48.7%、カジレーネ(株)製)を用いた。また、マンド レル径は、12mmとした。

2.2 単給糸 FW 法パイプ成形

単給糸 FW 法によるパイプ成形条件は、以下のとおり とした。 装置 フィラメントワイディングマシン

(FWM-1500LF 旭化成エンジニアリング(株)製)

繊維束本数 1本 積層構成 6層 配向 ヘリカル巻き 45 deg 外径 15mm、内径 12mm 成形加熱温度 220~230℃ カーボンヒーター(メトロ電気工業(株)製) ラッピングテープ (テトラスG105 日本ポリマー(株)製) なお、パイプ成形後、成形加熱温度でラッピング処理を 行った。 2.3 多給糸 FW 法パイプ成形 多給糸 FW 法によるパイプ成形条件は、以下のとおり とした。 装置 多給糸フィラメントワインダー (MFW48-1200CKS 村田機械(株)製) 繊維束本数 8本 積層構成 6層 配向 +45、-45、+45、-45、+45、-45deg 成形速度 60mm/min 加熱装置 短波長赤外線ヒーター(ヘレウス(株)製) 入力電圧 150V 外径 15mm、内径 12mm ラッピング加熱温度 220~230℃ カーボンヒーター(メトロ電気工業(株)製) ラッピングテープ (テトラスG105 日本ポリマー(株)製)

2.4 圧縮強度評価

 F縮試験により軸方向の強度評価を行った。試験条件は以下のとおりとした。

 Kacon AG-50kNXPlus((株)島津製作所製)

*1 三河繊維技術センター 産業資材開発室 *2 三河繊維技術センター 産業資材開発室(現三河繊維技術センター 製品開 発室)

試料長	50mm
試料数	5個
温湿度	23°C、50%RH
圧子	水平
試驗谏度	5.0mm/min

3. 実験結果及び考察

3.1 単給糸 FW 法パイプ圧縮強度評価

図1 に単給糸 FW 法パイプの圧縮強度試験結果を示 す。なお、図中の凡例の数字は、測定順を表す。

図1 単給糸 FW 法パイプ圧縮強度評価

左上:塑性座屈後試料 右上:塑性座屈後試料上面 左下:弾性座屈後試料

図2 単給糸 FW 法パイプ圧縮試験後

試料3を除く4点が、弾性域内で座屈が発生した。弾 性座屈をした試料は、ひずみが大きくなるにつれて圧縮 応力が低くなる傾向となった。一方、弾性域内で座屈を 起こさなかった試料3は、連続的な塑性座屈変形が起き、 ひずみが大きくなるにつれて圧縮応力が次第に大きくな る傾向となった。このことから、エネルギー吸収特性に 優れている結果となった。試験後の試料の写真を図2に 示す。

塑性座屈した試料は、蛇腹状に変形しており、荷重を 軸方向に受け止めた破壊の仕方をしていた。一方、弾性 座屈した試料は、局所的に損傷し、そこを起点に荷重が かかってしまい、曲がりながら破壊形態となっていた。 単給糸 FW 法では、繊維を巻くときに交絡点ができてし まうため、応力集中し、座屈が起きやすくなってしまっていると考えられる。

3.2 多給糸 FW 法パイプ圧縮強度評価

図3に多給糸 FW 法パイプの圧縮強度試験結果を示 す。単給糸 FW 法パイプとは異なり、弾性座屈は起きな かった。最大圧縮応力に達した後に、低くなりひずみが 大きくなるにつれて緩やかに圧縮応力が増加する傾向と なった。試験後の試料の写真を図4に示す。巻いた炭素 繊維が剥がれながら、また軸方向に陥没しながら圧壊し ているのが確認できる。交絡点がないため弾性座屈が起 きなかったと考えられる。

図3 多給糸 FW 法パイプ圧縮強度評価

左:試験後試料側面 右:試験後試料底面図4 多給糸 FW 法パイプ圧縮試験後

4. 結び

本研究の結果は、以下のとおりである。

- (1) 単給糸 FW 法パイプは、炭素繊維の交絡点があるため、弾性座屈が起きやすい傾向となった。
- (2) 単給糸 FW 法パイプは、連続的な塑性座屈変形が起 きれば、高いエネルギー吸収特性を示していた。
- (3) 多給糸 FW 法パイプは、弾性座屈が起きにくく、炭 素繊維が剥がれながら圧壊し、エネルギー吸収特性 が優れている傾向となった。

文献

 Tadashi Uozumi, Akio Ohtani, Asami Nakai, Motohiro Tanigawa, Tatsuhiko Nishida and Takahiro Miura: *Journal of Mechanics Engineering* and Automation 5,435-439(2015)