研究論文

いぶし瓦中の鉄化合物の挙動調査

今井敏博*1、深澤正芳*1、山口敏弘*2、加藤裕和*3、中尾俊章*3、村井崇章*3

Behavior of Iron Compounds in the Smoked Roofing Tile

Toshihiro IMAI^{*1}, Masayoshi FUKAZAWA^{*1}, Toshihiro YAMAGUCHI^{*2}, Hirokazu KATO^{*3}, Toshiaki NAKAO^{*3}, and Takaaki MURAI^{*3}

Mikawa Ceramic Research Institute^{*1*2} Research Support Department^{*3}

いぶし瓦中の鉄化合物の挙動を調査するため、様々な種類のいぶし瓦を試作して人為的に色味変化させ、 XPS 測定による組成確認、XAFS 測定による化学状態分析を行った。その結果、いぶし瓦中の鉄化合物の 構造は焼成温度に依存しており、この構造の違いが、その他の要因より色味変化に影響を与えている主た る要因である可能性が高いことが分かった。

1. はじめに

愛知県西三河地区周辺において生産される三州瓦は、 日本三大瓦の一つに数えられる。その中でもいぶし瓦は、 銀色光沢の炭素膜を形成した美観性に優れる瓦である。 しかし、経年後に、炭素膜の色味が変化することがある (図 1)。

図1 色味変化した屋根瓦の例

いぶし瓦の表面には、瓦の高温焼成工程後、プロパン ガス等を導入するくん化と呼ばれる工程を経て、炭素膜 が形成されている。このくん化の過程で瓦素地中の鉄化 合物が還元される。

これまでに、三河窯業試験場の調査で、自然に色味変 化した瓦においては、瓦の表面近傍では炭素成分が減少 するとともに、3価の鉄化合物の存在が確認されており、 色味変化の原因は、この鉄化合物の影響によるものであ ることが分かっている。

そこで、鉄化合物が色味変化に与える影響を更に詳細

に調査するため、様々な条件で焼成、くん化したいぶし 瓦を試作した。そして、それらを人為的に色味変化させ、 深さ方向の素地の状況を観察し、自然の色味変化品と比 較した。

2. 実験方法

2.1 色味変化に用いたいぶし瓦

実験には、A、B、C の 3 種類のいぶし瓦を用いた。 各瓦の具体的な焼成条件等を表1に示す。A は三州瓦の 一般的な焼成条件、B は弱還元条件、C は低温度焼成で 製造された瓦である。

試料	焼成温度、時間	くん化温度、時間
А	1150℃、2 時間	980℃、20分
В	1150℃、2 時間	880℃、20分
С	1020℃、2 時間	980℃、20分

表1 色味変化に用いたいぶし瓦の焼成条件等

2.2 実験手順

人為的に色味変化を起こさせる手法として、大気中の 汚染物質を考慮して、オゾン、アルデヒド等の様な酸化 力の強い光化学オキシダントを想定した過酸化水素と、 窒素酸化物、硫黄酸化物の様な酸性雨を想定した酢酸と の混合溶液の浸漬による加速試験を選択した。

実験の手順は、まずそれぞれのいぶし瓦を 5cm 角程 度に切断し、酸化剤である 3%過酸化水素水と酸性溶液 である 1%酢酸の混合溶液に浸漬し、反応させた。浸漬 時間は、1、24、72時間とした。その後、試験体をシャ ーレに移し、試験体の半分程度を水に浸漬し、24 時間 後取り出し、表面を観察した。

2.3 分析方法

2.3.1 XPS 測定

いぶし瓦の表面から内部にかけての組成分布を確認す るため、X 線光電子分光装置(XPS:アルバック・ファ イ社製 VersaProve II)を用いて測定を行った。

分析深さは表面から数 nm であり、付属のアルゴンイ オン銃でスパッタリングしながら測定することで深さ方 向の情報も得られる。

ここで説明する結果は、深さ方向に炭素、鉄化合物、 ケイ素化合物、アルミニウム化合物等の物質を組成分析 した結果である。

2.3.2 XAFS 測定

いぶし瓦中の Fe 元素の状態分析のため、X 線吸収微 細構造(XAFS)測定を行った。

今回の測定は、浸漬試験と同一のいぶし瓦から別に試 験片を切り出し、粉砕したものを窒化ホウ素で希釈し、 試料をペレット化したものを、あいちシンクロトロン光 センタービームライン BL5S1 硬 X 線 XAFS にて透過法 で行った。

3. 実験結果及び考察 3.1 いぶし瓦の XPS 及び XAFS 分析結果

3.1.1 XPS 分析結果

図2に人為的に色味変化させた試料と比較するために、 浸漬試験前の試料 A 及び試料 A の施工後の色味変化品 の XPS 分析結果を示す。

X 軸は瓦の表面からの深さであり、左方向が瓦の表面、 右方向が瓦の内部となっている。また、Y 軸は各深さに 対する構成元素の割合を示している。なお、鉄の原子割 合については、Y 軸右側に示している。

浸漬試験前の試料 A では深さ 1.3µm 位までいぶし膜 の成分である炭素に覆われており、瓦の内部に向かうに つれ、アルミニウム化合物やケイ素化合物等の素地の成 分が増えていた。

試料Aの施工後の色味変化品では、浸漬試験前の試料 Aのいぶし瓦と比べ、表面付近で鉄の存在が確認できた。 また、炭素成分が減少し、アルミニウム化合物やケイ素 化合物等の素地の成分が現れていた。

図3に試料 A を混合溶液に時間を変えて浸漬し、反応させた XPS 分析結果を示す。

1時間反応させたいぶし瓦は、2.5µm 位までには炭素 成分が多く存在しており、素地の成分は少なくなってい た。24時間反応させたいぶし瓦は、素地中の成分が表 面に現れたことにより、表面付近で炭素成分が減少し、 鉄、酸化物、ケイ素化合物等素地の成分が増えていた。

b) 24 時間反応させたいぶし瓦

図4に試料Aの24時間反応後の様子を示す。瓦の表面に茶褐色の模様が見られた。

図4 試料A(24時間反応させた瓦)

図5に試料 Bの XPS 分析結果を示す。1時間、24時間反応させたいぶし瓦は共に試料Aと似たような傾向を示していた。

図6に試料CのXPS分析結果を示す。

1時間反応させたいぶし瓦は、試料A、試料Bと同じ く、表面付近には炭素膜が存在しており、素地の成分は 少なくなっている。24時間反応させても大きな違いが 見られなかったので、更に反応時間を延ばし、72時間 反応させたが、大きな変化は見られなかった。

a) 1時間反応させたいぶし瓦

図7 試料C(72時間反応させた瓦)

図7に試料Cの72時間反応後の様子を示す。試料A と比較して、表面に茶褐色の模様がほとんど見られず、 分析結果とも一致していた。

3.1.2 XAFS 分析結果

いぶし瓦中の鉄化合物の構造を調べるため、色味変化 させる前の試料 A、B、Cと、比較のために XAFS 分析 用標準試料の鉄の XAFS 分析を実施した。図8にその結 果を示す。

図8 鉄と比較したいぶし瓦の XAFS 分析結果

X 軸は原子間距離、Y 軸は原子の配位数を表している。 いぶし瓦中の Fe 元素との隣接原子間距離については、 純粋な鉄とは一致は示さず、また、ピークの形状の違い から、鉄より結晶性が低くなっていた。

図9にいぶし瓦の XAFS 分析結果を示す。

図9 いぶし瓦の XAFS 分析結果

図9は、いぶし瓦同士を比較しやすくするために図8 から鉄を除き、Y軸のスケールを変更したものである。

試料 A と試料 B は、ピークの形状にかなり一致が見 られる。試料 C は試料 A、試料 B と比べ特定の原子間 距離においては、良い一致は見られず、また、結晶構造 にはなっていないものの、鉄化合物の構造の規則性が高 くなっていた。

図 10 に他の産地のいぶし瓦 D、E と比較した XAFS 分析結果を示す。

他の産地のいぶし瓦 D は、素地の成分は異なっているが、焼成温度は試料 C と同じである。

また、Dとは別の産地のいぶし瓦Eは、素地の成分は

異なっており、焼成温度は1200℃である。

チャートの形状は A、B、E(高焼成温度)と、C、D(低 焼成温度)とで、それぞれ一致が見られた。よって、鉄 化合物の構造は素地の成分より、焼成温度への依存性が 高いと考えられる。

結晶構造の様な構造の規則性の高い状態に対し、規則 性の低い非晶質は、酸溶液等により素地の成分が分解さ れやすくなることが分かっている¹⁾。いぶし瓦の場合は、 高温焼成することにより、鉄化合物の構造の規則性が低 くなり、その結果、分解されやすくなる。そして、この 分解された鉄化合物が瓦の表面に析出したと推測される。

4. 結び

薬品を使用し、大気がいぶし瓦に作用する化学的状態 に近づけることで、自然の色味変化を、人為的に再現す ることが出来た。

くん化の温度や炭素膜の厚さは、色味変化にはあまり 影響を与えないことが認められた。

いぶし瓦を高温焼成することにより、鉄化合物の構造 の規則性が低くなり、その結果、酸溶液により分解され やすくなった。そして、この分解された鉄化合物が瓦の 表面に析出し、色味変化を引き起こしたと推測される。

文献

 1) 冨田武満他:非晶質成分量によるまさ土の風化度の 判定,土木学会論文集,475(Ⅲ-24),69(1993)