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本研究では、炭素繊維強化熱可塑性樹脂の射出成形条件の最適化において、機械学習を用いたデータ駆

動型最適化の手法を適用した。入力変数には成形条件、出力変数には成形品重量・引張強度とした教師デ

ータを学習させたニューラルネットワークモデルを用いて、成形品の重量と引張強度をともに大きくする

成形条件を複数予測した。それらの条件で実際に成形・測定して、教師データでは得られなかった重量と

引張強度の組み合わせを実証した。  
 

11..  ははじじめめにに  
工業部材に用いられる樹脂成形品の性能は、材料だけ

でなく、成形条件の影響も大きく受ける。そのため、要

求性能を満たす最適な成形条件を見出すことが重要であ

るが、熟練技術者の経験と勘に頼るところが大きい。ま

た、要求性能の項目が多いほど、最適化が難しくなる。

このようなことは、樹脂成形品に限らず、工業部材一般

に言えることであり、多くの中小企業では、技術者の育

成と経験・ノウハウの継承、さらなる技術力の強化が常

日頃の課題である。これらの解決に役立つ一つの手法と

して、データを活用したプロセスインフォマティクスが

挙げられ、射出成形の分野でも、いくつかの取り組みが

ある 1)~4)。具体的には、入力変数(=製造条件)と出力変

数(=部材の性能値)の実験データを用意し、それらを関

連付けた回帰式(=機械学習モデル)を PC 上で構築するこ

とによって、ノウハウの可視化や性能向上が見込める製

造条件の予測に活用できることが報告されている。 

本研究では、データと機械学習を用いたプロセスイン

フォマティクスの一例として、射出成形条件の最適化を

検討した。具体的には、繊維長が長いため、金型への適

切な充填の難易度が高い長繊維の炭素繊維強化熱可塑性

樹脂(CFRTP)成形品の、重量と引張強度をともに最大

化する成形条件の予測と実証を行った。 
 

22..  実実験験方方法法  
22..11  教教師師デデーータタ  

材料には、長繊維 CF 強化 6 ナイロンペレット(東レ

(株)製 TLP1060、CF 含有量 30wt%)、射出成形機には

東洋機械金属(株)製 Si-15V を用いた。成形品は、JIS K 
7139 タイプ A13 に準拠したダンベル形の縮尺試験片

(平行部長さ 24mm, 平行部の幅 3.5mm, 厚さ 2.0mm)と
した。ここでは、可塑化条件(回転速度、背圧、可塑化

位置)を固定とし、射出条件、保圧冷却条件として表表 11
の範囲から経験的に選定した 93 の組み合わせ条件にて

成形した。なお、シリンダー温度は、シリンダー先端か

らホッパー直下までを 4 分割して設定可能であるが、こ

こでは、すべて同一の値とした。また、入力変数 X3 で

用いる 1 次圧は直接設定できる値ではないため、あらか

じめシリンダー温度、射出速度、V-P 切替位置の組み合

わせ毎に予備試験を行って成形機から取得し、その値を

元に保圧の値を設定した。 
1 条件当たり 3 個の成形品について、ゲートカット後

のダンベル試験片重量(以下重量)と引張強度を測定し、

出力変数とした。引張試験については、試験片を

100℃・6 時間の予備乾燥ののち、室温 23℃にて、精密 
万能試験機((株)島津製作所製 AG-50kNXplus)を用い 
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図図 11 入力変数の分布 

て、クロスヘッド速度 2mm/min で行った。 
22..22  機機械械学学習習モモデデルルののハハイイパパーーパパララメメーータタチチュューーニニンンググ  

機械学習モデルには、ニューラルネットワークを用い

た。簡便のために、2 種の出力変数を 1 モデルで扱い、

中間層を 1 層・活性化関数は tanh に固定した。中間層

のユニット数と荷重減衰の値をモデルのハイパーパラメ

ータとし、10-fold cross validation(seed 値固定)による

ベイズ最適化にて決定した。 
 

33..  実実験験結結果果及及びび考考察察  
33..11  教教師師デデーータタ  

入力変数の頻度を図図 11 に示す。本研究では、93 の成

形条件の組み合わせを経験的に選定したため、条件選択

に偏りが生じた。機械学習による回帰モデルを構築する

場合において、教師データの分布の状態が、適切なモデ

ル構築の可否に影響を及ぼすことがある。そのため、実

験計画法など、教師データ取得のための的確な条件設定

手法を取り入れることが今後の課題である。これらの手

法を取り入れることができれば、93 よりも少ない成形

条件の教師データで、以降に示したモデル構築結果と同

等の結果を得られる可能性がある。 
入力変数と出力変数の散布図と、両者の相関係数を

図図 22、図図 33 に示す。重量については、シリンダー温度、

金型温度、保圧/1次圧、保圧時間との間にある程度の相

関が認められた。シリンダー温度、保圧時間については、

一様な右肩上がりではなく、傾向が複雑であった。一方、

引張強度については、いずれの入力変数とも明確な相関

がみられなかった。入力変数同士が互いに独立で出力変

数に対してそれぞれ線形の関係、という前提では表現で

きないような、非常に複雑な関係があるものと推測され

た。 
33..22  機機械械学学習習モモデデルル評評価価  

ニューラルネットワークモデル構築結果を図図 44 に示す。

横軸は教師データの出力変数の実験値、縦軸は、教師デ 
 
 
 
 
 
 
 
 
 
 
 
 

ータの入力変数の値をモデルに代入して計算させた、出

力変数の推定値であり、いずれも正規化した無次元の値

である。出力変数の実験値と推定値が完全に一致した場

合を図の対角線で示した。パイパーパラメータチューニ

ングを行ったモデルについて、教師データを 9:1 で訓練

データ(train)とテストデータ(test)に分け、モデル性能

を評価した。具体的には、訓練データとテストデータの

二乗平均平方根誤差(RMSE_train, RMSE_test)につい

て、重量(Y1)、引張強度(Y2)のそれぞれで図中に示した。

いずれも、RMSE_train と RMSE_test がほぼ同じ値と

なったことから、学習不足や過学習ではない、適切なモ

デルが構築できたと考えられる。このモデルのユニット

数は 30、荷重減衰の値は 0.001 であった。 
重量のモデルと引張強度のモデルを比較すると、引張

強度の RMSE(_train, _test)の値が、重量の値に比べて

大きかった。この要因として、①前述した教師データの

入力変数の偏りが引張強度データの学習において不利で

あったこと、②教師データの入力変数の種類が引張強度

を表現するには相対的に不十分であったこと、③ニュー

ラルネットワークモデルを中間層 1 層に限定したために、

重量に比べて複雑であろうと想定される入力変数と引張

強度の関係を表現できなかったこと、④他の機械学習モ

デルの可能性を未検討であること、などが考えられる。

特に②について、CFRTP の物性には繊維配向の影響が

あることは広く知られていることから、成形品の繊維配

向の指標を入力変数に加えることによって、モデル精度

の向上が期待される。しかし、繊維配向のような、新た

な測定・解析をわざわざ実施しなければ得られない指標

を機械学習モデルに不可欠な入力変数にすることは、現

場での機械学習の使いやすさを阻害するものと考えられ

る。一方で、本研究で取り上げた入力変数は射出成形機

の設定条件あるいは成形機から容易にモニタリングでき

る値であり、製造現場で値を入手しやすい入力変数を用

いた機械学習モデルは実際に活用しやすいといえる。
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図図 33 入力変数と引張強度の散布図 

図図 22 入力変数と重量の散布図 

教師データの準備の難易度とモデル精度のバランスにつ

いては、機械学習モデルの活用目的に照らし合わせて

個々に検討する必要がある。 
33..33  成成形形条条件件のの最最適適化化  

重量(Y1)、引張強度(Y2)それぞれについて、3 種の

seed 値でハイパーパラメータチューニングしたモデル 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
を用いて、表 1 に示す成形条件の予測データ範囲の総当

たり組み合わせで予測値を算出した。金型実測によるダ

ンベル試験片寸法と樹脂の密度から算出した計算上の最

大充填重量は 0.813g であることから、その 99~100%の

範囲の重量の予測値データに絞った。さらに引張強度の

予測値を降順に並べて上位の成形条件、つまり、重量 
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図図 44 構築したモデルの評価 

図図 55 予測成形条件における実証結果 

表表 22 モデルが予測した成形条件 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
が最大となる付近で、引張強度をさらに大きくできると

予測される成形条件を複数抽出した(表表 22)。これらの成

形条件からモデルが予測する値は、重量(Y1)が 0.804g、
引張強度(Y2)が 291-293MPa であった。 

これらの成形条件で実際に成形し、重量と引張強度を

実測・検証した(図図 55)。予測成形条件で得たデータ(●)
のプロット横の数字は、表 2 の成形条件番号に対応して

いる。ニューラルネットワークモデルが予測した成形条

件では、重量が最大となる付近で、教師データに比べて

引張強度が大きくなり、機械学習モデルにより重量と引

張強度をともに最大化する成形条件を予測できたことを

実証した。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  

44..  結結びび  
長繊維 CFRTP の射出成形において、重量と引張強度

をともに最大化する条件を、機械学習の回帰モデルによ

り予測した。結果は以下のとおりである。 
(1) ニューラルネットワークモデルを構築し、予測した

成形条件で、重量と引張強度をともに大きくできる

ことを実証した。 
(2) 教師データの取得方法や入力変数の取捨選択、ニュ

ーラルネットワークモデルの構造に改善の可能性が

あることが分かった。 
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