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光学画像のように簡易的に取得できるデータから、工業材料の状態を予測できるようにすることを目的

とし、機械学習を用いて鋼材の酸化膜厚や鉄の価数を予測することを試みた。塩水浸漬試験で腐食させた

SPCC 鋼板について、デジタルマイクロスコープや共焦点顕微鏡を用いて得られた色彩情報や凹凸情報を

入力変数とし、蛍光 X 線分析や X 線吸収分光で得られた酸化膜厚や Fe の価数を出力変数とし、予測モデ

ルを作成した。結果、酸化膜厚については、人工ニューラルネットワークの手法にて、相関係数 0.85 以上

の良好な予測モデルを作成することができた。

 
１１．．ははじじめめにに

近年、機械学習の研究分野の発展が目覚ましく、教師

無し学習である主成分分析やクラスタリング、教師有り

学習である回帰分析など、多岐にわたる解析手法にて機

械学習が適用されている。機械学習が適用されることに

よって、例えば回帰分析については、重回帰分析よりも

精度の高い結果が得られる場合が多く、電池材料 1)や気

象 2)、医療 3)など幅広い分野で盛んに応用研究がなされ

ている。 
本研究では、機械学習を用いた回帰分析の応用研究と

して、一般的な鉄鋼材料を用いて、その表面の酸化状態

を光学画像の様な簡易的な情報から予測できないか検討

した。通常、材料表面の化学的な状態を調べるためには、

X 線光電子分光や X 線吸収分光といった分光分析が必要

であり、これらの分析手法は試料調製や分析にかかる時

間、スキルの面で簡易的にできるような内容とは言い難

い。しかし、もしデジタルマイクロスコープで観察した

画像から予測することができれば、非常に迅速で簡易的

な手法になり得る。 
 

２２．．実実験験方方法法

22..11  ササンンププルル作作製製

本研究では、一般的な鉄鋼材料として SPCC(冷間圧

延)鋼板を用いた。鉄の酸化状態を得るために、0.8mm
厚の SPCC 鋼板を用いて、10%濃度の塩水に 2 日から 2
週間程度浸漬させ、表面の酸化を促進し、様々な色合い

に変色した箇所を観測点とした。図図 11 に試験前後のサン

プル写真を示す。 
 
 
 
 
 
 
   試験前  試験後 

図図 11 塩水浸漬試験前後の SPCC 鋼板写真 
(横 20mm×縦 15mm) 

 
22..22  機機械械学学習習用用デデーータタ取取得得

本研究では、機械学習の入力変数として、色彩情報と

凹凸情報を選択した。色彩情報としては、色相、明度、

彩度の 3 種、凹凸情報としては、平均高さ、最大高低差、

平坦度の 3 種を入力変数とした。 
一方、表面の酸化状態を示す指標として、酸化膜厚と

Fe の価数を選択し、機械学習にて作成した予測モデルに

よって、これらを出力変数として予測することを目的と

した。表表 11 にそれら各変数をまとめたものを示す。 
入力変数として設定した色相、明度、彩度、平均高さ、

最大高低差、平坦度といった特性を得るために、まず色 
相、明度、彩度については、デジタルマイクロスコープ(ラ
イカ製 DVM6)にて画像を取得し、画像解析ソフトウェ

アである ImageJ4)を用いて色差情報の変換を行い実施 
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した。さらに、平均高さ、最大高低差、平坦度について

は、共焦点顕微鏡(ライカ製 DCM8)を用いてトポグラフ

ィー像を取得したのち、ISO25178 に従って各特性を取

得した。図図 22、、33 に得られた像の例を示す。 
 
 
 
 
 
 
 
 
 
図図 22 塩水浸漬試験後のデジタルマイクロスコープ像

(横 0.84mm×縦 0.63mm) 
 
 
 
 
 
 
 
 
 
 
図図 33  共焦点顕微鏡で得られたトポグラフィー像 

(横 0.88mm×縦 0.66mm) 
 

出力変数として設定した酸化膜厚については、微小部

蛍光 X 線分析装置(ブルカー製 M4 Tornado plus)を用い

て、得られた O Kα 線強度から算出した。算出方法とし

ては、あらかじめ選んだ 6 点のサンプルについて、X 線

光電子分析装置(XPS：アルバック・ファイ製 PHI5000 
VersaProbeⅡ を用いて深さ方向分析を行い、O1s スペ

クトル強度のプロファイルから換算した膜厚と微小部蛍

光 X 線分析で得られた O Kα 線強度を対応させた検量線

図(図図 44)を用いて計算した。 
 

 
 
 
 
 
 
 
 
 
図図 44 微小部蛍光Ｘ線分析で得られた O Kα線強度と

XPS 深さ方向分析から得られた酸化膜厚の相関 
 

もう一つの出力変数である Fe の価数については、あ

いちシンクロトロン光センターのビームライン BL5S1
を利用して、X 線吸収分光法で評価した。転換電子収量

法にて Fe の K 吸収端を測定し、得られたスペクトルと

Fe、FeO、Fe3O4、Fe(OH)3、Fe2O3 の参照物質スペク

トルから解析ソフトウェアである Athena を用いて線形

和解析を実施し、得られた各参照物質の存在比率から価

数の平均値を算出した。尚、各参照物質の Fe の価数に

ついては、FeOは 2価、Fe3O4は 2価および 3価、Fe(OH)3

は 3 価、Fe2O3 は 3 価を示す。サンプルから得られたス

ペクトルの例と各参照物質スペクトルを図図 55 に示す。 
 

 
 
 
 
 
 
 
 
 
 
図図 55 サンプルと各参照物質の Fe K 吸収端スペクトル 
 

各観測の領域は、各分析手法でおおよそ統一し、横 0.8
～0.9mm×縦 0.5～0.6mm とし、計 420 点実施し、得ら

れたデータを機械学習に取り入れた。 
 

機機械械学学習習モモデデルル

本研究では、予測モデルの作成手法として、人工ニュ

ーラルネットワーク(ANN)と決定木の勾配ブースティ

ングアルゴリズム(XGBoost)を用いた。尚、両手法は機

械学習プラットフォームである shinyMIPHA を用いて

実施した。ANN は、入力変数と出力変数の間に、両変

表表 11 予測モデル作成に使用した各変数 

入入力力変変数数 出出力力変変数数 

色彩情報 
色相 
明度 
彩度 

酸化膜厚[nm] 
Fe の価数 

凹凸情報 
平均高さ[nm] 
最大高低差[nm] 
平坦度 
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数に依存する隠れ値を複数設定し、この隠れ値に対する

重み付けの最適化によって両変数の相関を得る手法であ

る。また、XGBoost は決定木といわれる、変数群を複数

分類して回帰分析を行った結果に対して、重み付けを行

い、実験値と予測値の差分を減らしていく手法となる。 
 

３３．．実実験験結結果果

得られたデータを用いて、ANN、XGBoost による予

測モデルの作成を行った。全データの 9 割を訓練データ

に用いて予測モデルを作成し、残りの 1 割のデータをテ

ストデータとして用いて予測を実施した。図図 66～～99 に、

各モデルと各出力変数に関して、観測データに対する予

測結果をプロットした図(y-y プロット)を示す。尚、y-y
プロットは予測モデル作成時に使用した訓練データと予

測モデル利用時に使用したテストデータに分けて示した。

図中の coefficient や CC は相関係数を示す。 
まず、ANN で作成した酸化膜厚の予測モデル(図 6)は、

訓練データの相関係数は 0.89、テストデータの相関係数

は 0.86 となり、比較的良好な予測モデルが作成できてい

ることが分かった。尚、同データを用いて重回帰分析を

行った際、相関係数 0.77 であったことから、線形に重み

付けを行う方法よりも機械学習の方が予測精度の高いモ

デルが作成できていることが分かった。従って、簡易的

な光学画像と作成した予測モデルによって、酸化膜厚を

精度よく予測できることが示唆された。 
作成した図 6 のモデルに対して、入力変数の影響を調

べるために、各入力変数の感度調査を行った結果を表表 22

に示す。感度は、色相、彩度、明度、最大高低差、平坦

度、平均高さの順に高く、主に色彩情報に関する変数が

支配的な要因になっていることが分かった。従って、デ

ジタルマイクロスコープやカメラで取得できる光学画像

から酸化膜厚の予測ができる可能性が示唆された。 
図 6 の縦軸において、テストデータの予測値-1.5、0、

+1.5 を示したときのデジタルマイクロスコープ像を図図

1100 に示す。予測値が大きくなるにつれて、表面の色合い

が黒くなり、酸化が進行しているような傾向が見られて

いることから、画像と予測結果がある程度対応している

ことが確認できた。 
一方、図 7 に示すように Fe の価数の予測モデル作成

結果については、訓練データの相関係数は 0.75、テスト

データの相関係数は 0.39 となり、精度の高いモデルが作

成されていないことが分かった。今回選択した入力変数

(光学画像)だけでは十分に Fe の価数を反映していない

と考えられ、さらに補足的なデータが必要になると考え

られる。 
XGBoost を用いて作成した酸化膜厚(図 8)および Fe

 
 
 
 
 
 
 
 
 
 
図図 66 ANN による酸化膜厚の予測モデルとテスト結果 

(○：訓練データ、△：テストデータ) 
 
 
 
 
 
 
 
 
 
図図 77 ANN による Fe の価数の予測モデルとテスト結果 

(○：訓練データ、△：テストデータ) 
 
 
 
 
 
 
 
 
 
図図 88 XGBoost による酸化膜厚の予測モデルとテスト 

結果(○：訓練データ、△：テストデータ) 
 
 
 
 
 
 
 
 
 
図図 99 XGBoost による Fe 価数の予測モデルとテスト 

結果(○：訓練データ、△：テストデータ) 
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図図 1100 図 6 の縦軸において、テストデータで各予測値を 

示したサンプルのデジタルマイクロスコープ像 
(横 0.84mm×縦 0.63mm)   
 

の価数(図 9)の予測モデルについては、どちらも訓練デー

タに対して相関係数の高いモデルが作成できたものの、

テストデータに対しては相関係数が低い結果となった。

この原因については、予測モデルの作成時に訓練データ

に合わせ込み過ぎたために、いわゆる過学習が発生した

ために汎用性が低下し、テストデータの予測精度が低く

なったと考えられる。今後予測モデル作成時のパラメー

タの調整によって精度が改善するかどうかを検討する必

要がある。 
 

４４．．結結びび

光学画像のデータから工業材料の状態を予測すること 

が、迅速で簡易的な判別手法として確立するために、機

械学習を用いて予測モデルの作成を行った。 
研究材料として、塩水浸漬試験後の SPCC 鋼板の酸化

状態の評価を行った。色相、明度、彩度(色彩情報)、平

均高さ、最大高低差、平坦度(凹凸情報)を入力変数とし、

酸化膜厚、Fe の価数を出力変数とした。学習方法として

は、ANN および XGBoost を用いて回帰分析により予測

モデルの作成を行った。 
結果、ANN については、酸化膜厚に関する比較的精

度の高い予測モデルを作成することができ、さらに、感

度の調査を行った結果、凹凸情報よりも色彩情報の影響

が強いことが分かった。Fe の価数は相関係数が高いモデ

ルを作成することができなかった。また、XGBoost につ

いては、酸化膜厚、Fe の価数両者で過学習と思われる現

象が見られ、良好なモデルが作成できなかった。 
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表表 22 図 5 のモデルに対する各入力変数の感度 
入力変数 感度 

色相 5.11 
明度 2.82 
彩度 2.27 
平均高さ 1.24 
最大高低差 2.07 
平坦度 1.39 
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