研究論文

使用済み酸化チタン系脱硝触媒の洗浄前後における

表面付着物量測定に関する考察

山田圭二^{*1}、清水彰子^{*2}、船越吾郎^{*1}、中尾俊章^{*1} 小縣早苗^{*3}、佐野誉^{*3}、大矢智一^{*3}

A Study on Measurements of Surface Adhesion Amount in Already Used Titanium Oxide-based Denitration Catalyst Before and After Washing

Keiji YAMADA^{*1}, Akiko SHIMIZU^{*2}, Goro FUNAKOSHI^{*1}, Toshiaki NAKAO^{*1}, Sanae OGATA^{*3}, Homare SANO^{*3} and Tomokazu OYA^{*3}

Research Support Department*1*2, Ibiden Engineering Co.,Ltd*3

シリカや酸化カルシウムなどが表面に付着した使用済み酸化チタン系脱硝触媒と、それを洗浄して付着 物除去した触媒を、波長分散型蛍光 X 線分析法(WDXRF)、マイクロ波加熱酸分解/誘導結合プラズマ発光 分光分析法(ICP-OES)および レーザーアブレーション(LA)/ICP-OES をそれぞれ用いて触媒付着物由来 の元素 Si、Ca、Al、Fe を測定した。その結果、洗浄前後で付着物量の差を確認できた元素は、WDXRF では Fe、マイクロ波加熱酸分解/ICP-OES では Si、Al、Fe、また LA/ICP-OES では Si、Ca、Al、Fe で あり、触媒の洗浄前後の品質評価方法として適しているのは LA/ICP-OES であることがわかった。

1. はじめに

火力発電所やゴミ焼却場などで使われる酸化チタン系 脱硝触媒は、長期間使用することでシリカや酸化カルシ ウムなどの酸化物が表面に付着して触媒性能が劣化する ため、定期的な交換を行う必要があった。しかし近年そ の交換コストの削減として、酸化物である付着物の洗浄 除去による性能回復技術が開発されており¹⁾、品質管理 として洗浄前後で付着物量を比較する測定法の確立が求 められている。そこで本研究では、品質評価方法として WDXRF、マイクロ波加熱酸分解/ICP-OES 及び LA/ICP-OES をそれぞれ用いて、洗浄前後の触媒の Si、 Ca、Al、Fe を測定し考察をした。その結果について報 告する。

2. 実験方法

2.1 試料および試薬

試料は、使用済み酸化チタン系脱硝触媒及びそれを洗 浄したものを用いた。マイクロ波加熱酸分解/ICP-OES

測定元素	F	Na	Mg	A1	Si	Р	S	C1	К	Ca	Sc~U (周期表)
スペクトル					K	α					
電圧 [kV]				3	0				4	10	50
電流 [mA]				10	00				7	'5	60
照射径						$\phi~10$ mm	1				
検出器*					Р	С					SC
2θスキャン方法					スラ	テップス:	キャン				
ピーク角度[deg]	76.874	47.674	39.202	144.710	109.050	141.190	110.700	92.880	136.690	113.130	15.560
開始角度[deg]	73.874	44.674	36.202	140.000	106.000	137.000	107.000	90.000	133.000	110.000	5.000
終了角度[deg]	79.874	50.674	42.202	148.000	112.000	144.000	114.000	96.000	140.000	116.000	90.000
ステップ[deg]					0.0)50					0.020
時間[s]	1.5	0.75				0.	. 5				0.2
速度[deg/min]	2	4					6				

表1 WDXRFの測定条件

*PC:proportional counter, SC:scintillation counter

では乳鉢で粉砕して均一化した粉末、WDXRF 及び LA/ICP-OESではその粉末を φ 12mm×3mm にプレス成 形したものを測定試料とした。

マイクロ波加熱酸分解で用いる試薬として、富士フイ ルム和光純薬社製有害金属測定用の硝酸、特級のふっ化 水素酸を用いた。試料分解後の定容純水として、メルク 社製 Milli-Q Integral5 で精製された超純水を用いた。

2.2 WDXRF による測定方法

WDXRF 装置(リガク社製 ZSX Primus II)を用いて、 **表1**の測定条件で1回測定した。定性分析で検出された 元素について、酸化物換算でファンダメンタルパラメー タ(FP)法による半定量分析 ²⁾を行った。

2.3 マイクロ波加熱酸分解/ICP-OES による測定方法

PTFE 製マイクロ波加熱酸分解容器に試料 0.05g を量 り取り、硝酸 5ml およびふっ化水素酸 0.5ml を加えて マイクロ波加熱酸分解装置(アナリティクイエナジャパ ン社製 TOPwave CX100)を用いて表 2 の加熱分解条件 で処理を行った。完全溶解させた後 50ml に定容し、 ICP-OES 装置(SPECTRO 社製 SPECTRO ARCOS マル チ型)を用いて表 3 の測定条件で 2 回測定した。

表2 マイクロ波加熱分解条件

	室温 — 2℃/min — 100℃(30min)
加熱条件	— 2°C/min — 120°C(10min)
	— 2°C/min — 150°C(30min)

高周波出力	1.40kW
プラズマガス流量	13L/min
補助ガス流量	0.8L/min
キャリアーガス流量	0.8L/min
	Si I 251.612nm
测空波目	Ca II 396.847nm
侧足仅下	Al II 167.078nm
	Fe II 259.941nm

表3 ICP-OES の測定条件

2.4 LA/ICP-OES による測定方法

レーザーアブレーション装置(ESI 社製 NWR213)と ICP-OES 装置を用いて、表4の条件で測定を行った。1 ラインあたりのレーザー照射時間を14sとし、待機時間 30s をとった後、ライン間隔 120µm で5 ライン測定し た。1 ラインのレーザー照射時の測定点数 14 点のうち レーザー照射始め2点と終わり2点を除く10点、計5 ライン 50 点の平均発光強度から、バッググラウンド(5 ライン目測定後の待機時間時測定点数 10 点の平均発光 強度)を引いた値を測定値とした。

表4 LA/ICP-OES の測定条件

LA						
照射パターン	ライン分析					
レーザー特性	213nm, Nd-YAG					
照射径	100μm					
走査速度	50μm/s					
レーザー出力	40%, 3.9mJ/cm 2					
パルス周期	1Hz					
ICP-0ES						
高周波出力	1.45kW					
プラズマガス流量	13L/min					
補助ガス流量	1.0L/mim					
キャリアーガス流量	0.5L/mim					
	Si I 251.612nm					
测空冲星	Ca II 315.887nm					
侧足仅长	Al II 167.078nm					
	Fe II 238.204nm					
データスキャン速度	1回/s					

3. 実験結果及び考察

3.1 WDXRF による測定結果

表 5に WDXRF の FP 法による半定量分析のうち Si、 Ca、Al、Fe の結果を示す。洗浄前後の差は Fe のみ確 認できたが、明確な差を得ることができなかった。

表 5 WDXRF の FP 法による半定量結果

(11855)							
	SiO_2	Ca0	A1203	Fe ₂ O ₃			
洗浄前	4.0	1.3	0.77	0.08			
洗浄後	4.0	1.3	0.77	0.05			

3.2 マイクロ波加熱酸分解/ICP-OES による測定結果

表6にマイクロ波加熱酸分解/ICP-OES による定量結 果を示す。洗浄前後の差はSi、Al、Fe で確認できた。 洗浄前後の差は非常に小さいことから表面付着物量は極 微量であると考えられる。

	Si (w	vt%)	Ca (wt%)		
冲达之	測定結果	平均值	測定結果	平均値	
	2.17	2 24	0.789	0 805	
	2.30	2.24	0.821	0.805	
仍已行于同门	A1 (v	vt%)	Fe (wt%)		
	測定結果	平均值	測定結果	平均值	
	0.512	0 599	0.040	0.042	
	0.531	0. 322	0.043	0.042	
	Si (w	vt%)	Ca (v	vt%)	
	Si (v 測定結果	vt%) 平均值	Ca(v 測定結果	vt%) 平均值	
	Si (w 測定結果 2.09	vt%) 平均值	Ca (w 測定結果 0.804	vt%) 平均值	
冰浴浴	Si (w 測定結果 <u>2.09</u> 2.10	vt%) 平均値 2.10	Ca(w 測定結果 0.804 0.810	vt%) 平均値 0.807	
洗浄後	<u>Si</u> (w 測定結果 2.09 2.10 A1 (w	vt%) 平均値 2.10 vt%)	Ca(w 測定結果 0.804 0.810 Fe(w	vt%) 平均値 0.807 vt%)	
洗浄後	Si (v 測定結果 2.09 2.10 A1 (v 測定結果	vt%) 平均値 2.10 vt%) 平均値	Ca(v 測定結果 0.804 0.810 Fe(v 測定結果	vt%) 平均値 0.807 vt%) 平均値	
洗浄後	Si (v) 測定結果 2.09 2.10 A1 (v) 測定結果 0.473	vt%) 平均值 2.10 vt%) 平均值	Ca(v 測定結果 0.804 0.810 Fe(v 測定結果 0.021	vt%) 平均值 0.807 vt%) 平均值	

表6 マイクロ波加熱酸分解/ICP-OES による定量結果

図1 LA/ICP-AESのタイムスキャンプロファイル

3.3 LA/ICP-OES による測定結果

図1にタイムスキャンプロファイル、表7にLA/ICP-OESによる平均発光強度の測定結果、図2に測定後の 試料表面を示す。洗浄前後の差はSi、Ca、Al、Fe すべ ての元素において確認することができた。LA/ICP-OES では、基材の触媒より表面付着物の方がアブレーション 効率がよく、表面付着物の微粒子が多く生成して、ICP 内に導入されるため、WDXRFやマイクロ波加熱酸分解 /ICP-OESと比較(表8)して顕著に捉えられたと考えら れる。

表7 LA/ICP-OES による平均発光強度の測定結果

	Si(cps)	Ca(cps)	Al(cps)	Fe(cps)
洗浄前	27708	14796	32791	6635
洗浄後	17048	3700	6200	1665

図2 LA/ICP-AES 後の試料表面

表8 各測定方法による洗浄前後の差

測定方法	Si	Ca	A1	Fe
WDXRF	\times	\times	\times	\bigcirc
マイクロ波加熱酸分解/ICP-0ES	\bigcirc	×	\bigcirc	\bigcirc
LA/ICP-0ES	\bigcirc	\bigcirc	\bigcirc	\bigcirc

(洗浄前後差あり○、なし×)

4. 結び

本研究では、シリカや酸化カルシウムなどが付着した 使用済み酸化チタン系脱硝触媒と、それを洗浄して付着 物を除去した触媒の2試料をWDXRF、マイクロ波加熱 酸分解/ICP-OES 及び LA/ICP-OES を用いて Si、Ca、 Al、Fe を測定した。その結果、LA/ICP-OES のみ Si、 Ca、Al、Fe すべての元素において付着物量の差を確認 できたことから品質評価方法として LA/ICP-OES が適 していることがわかった。LA は ICP-OES より高感度 に検出できる誘導結合プラズマ質量分析法(ICP-MS)と 組み合わせることが多いが、ICP-MS はスペクトル干渉 の影響を受けやすく、また試料マトリックス元素による 機器汚染を生じやすいため、ICP-OES で付着物量の差 を確認できれば、LA と ICP-OES の組み合わせが適し ていると考えられる。

文献

- 1) 服部雅典: 平成 28 年度火力原子力発電大会論文集, 17(2016)
- 2)株式会社リガク: 蛍光 X 線分析の手引き, 77(1982)