研究論文

窒化処理を施した鋼材表面性状のシンクロトロン光分析

村瀬晴紀*1、杉本貴紀*2、清水彰子*3、森田晃一*4、村井崇章*1、福岡修*5

Synchrotron Radiation XRD and XAFS Investigation of the Surface Condition of Nitrided Steel

Haruki MURASE^{*1}, Takanori SUGIMOTO^{*2}, Akiko SHIMIZU^{*3}, Koichi MORITA^{*4}, Takaaki MURAI^{*1} and Osamu FUKUOKA^{*5}

Research Support Department *1*2*3*5, Industrial Research Center *4

金型の表面硬度を上げる方法のひとつに、窒化処理が挙げられる。しかし基材の種類や表面状態・窒化 処理の方法などにより、形成される表面の層の、組成や厚さに差が生じ、性能や特性に影響を与える。そ こで本研究では、表面に形成される化合物層や拡散層について X線回折測定(XRD)および X線吸収微細構 造(XAFS)により分析し、類別することを検討した。合金工具鋼と炭素鋼を基材として、鏡面加工とショ ットブラスト処理、窒化処理はガス軟窒化と Electron Beam Excited Plasma(EBEP)窒化の条件で作製し た試料を類別した結果、合金工具鋼は 4 通り、炭素鋼は 3 通りの表面層を想定することができた。

1. はじめに

近年、鋳造製品の複雑化や大型化などにより、金型類 も複雑化・大型化しており、高価になっている。このた め、金型の表面硬度を上げることで寿命を延ばし、ラン ニングコストを抑えることが、ますます重要となってい る。金型の表面硬度を上げるために広く用いられる方法 のひとつに、窒化処理が挙げられる。

鋼材に窒化処理を行うと、一般的には表面に化合物層 と呼ばれる Fe2·3N や Fe4N などの、鉄と窒素の化合物 からなる層が形成される。またその下には、拡散層と呼 ばれる、金属組織内に窒素が拡散した層が形成される¹⁾。 形成される層の種類や厚みは、基材の種類・表面状態や 窒化処理等の方法によって異なることが知られている²⁾。 このため、上記の条件の組み合わせによって形成される 化合物層や、拡散層の状態を把握することは、硬さや、 潤滑性、耐摩耗性、耐衝撃性などの性能を知る上で有用 である。

一般的に、鋼材の表面状態(結晶構造・化学状態)を調 査する手法として、XRD や X 線光電子分光(XPS)など が用いられる。しかし実験室で用いられる XRD 装置で は、Cu Ka線を光源に用いると鉄の蛍光 X 線の影響を受 け、この蛍光 X 線を回避するために Cr Ka線を光源に 用いると Bragg の式から観測されるピークが少なくな り、いずれも解析が困難である。また XPS では分析深 さが数 nm と浅いことから、表面の汚れや吸着物質など を優位に検出することが多く、実際の表面特性を反映す る情報が得られるとは言い難い。そこで本研究では、シ ンクロトロン光を用いた薄膜 XRD 測定により、他の分 析手法では情報が得られにくい表面から約 1 µm に形成 される層を分析・分類することを試みた。高エネルギー の X 線を用いることで、鉄の蛍光 X 線を回避しつつ、 多数のピークが得られる。さらに、斜入射測定の角度の 自由度も高い。窒化処理による各元素の化学状態の変化 を把握するために XAFS 測定を用いた。今回用いた XAFS 測定の手法では分析深さが数百 nm 前後であり、 浅すぎない測定が可能である。

試料は気相での反応を用いる窒化処理の中から図1に 示すガス軟窒化(アンモニアガスと窒素ガス、炭酸ガス などの混合ガスを用いて、比較的高温で処理)と、 EBEP 窒化(真空中で、窒素プラズマを用いて比較的低 温で処理)を選び、鋼材と窒化処理の組み合わせによっ て形成される化合物層・拡散層の有無や、化学状態など の傾向を把握することを試みた。

2. 実験方法

2.1 測定試料

合金工具鋼(SKD61)、および炭素量の異なる炭素鋼

*1 共同研究支援部 シンクロトロン光活用推進室 *2 共同研究支援部 計測分析室 *3 共同研究支援部 計測分析室 (現企画連携部) *4 産業技術センター 金属材料室 *5 共同研究支援部 シンクロトロン光活用推進室(現あいちシ ンクロトロン光センター) (S25C、S45C 生材)を基材とし、表面に鏡面加工もしく はショットブラスト処理を行った後、ガス軟窒化もしく は EBEP 窒化を行ったものを測定試料とした。ショッ トブラスト処理はスチールビーズの#50 を用い、圧力 0.6 MPa・30 sec で行った。ガス軟窒化は企業の協力に より、実際に工業的に使用している条件で処理を行った。 EBEP 窒化は N₂ ガス・H₂ ガスを用いて 530℃・5 時間 で処理を行った(表 1)。

基材の種類	基材の表面状態	窒化処理の方法
SKD61 S25C	鏡面 ショット ブラスト 面 (ゴニュト トま記)	ガス軟窒化 (GASと表記) EBEP窒化
3450王州	(ノノスト こ 衣記)	(EBEPと表記)

表1 作製した試料の条件

2.2 窒化層形成の確認

作製した試料の窒化の様子を確認するために、目視に よる外観の検査、断面のビッカース硬度測定による表面 から内部への硬さの分布、断面の電子線マイクロアナラ イザ(EPMA)測定による窒素等の各元素の分布を確認し た。

2.3 窒化層のシンクロトロン光分析(XRD·XAFS)

SKD61・S25C・S45C 生材について、窒化後の表面 に形成される化合物層・拡散層の特定を目的に、薄膜 XRD 測定をあいちシンクロトロン光センター薄膜 X 線 回折ビームライン BL8S1 で行った。入射 X 線のエネル ギーは鉄の蛍光 X線によるバックグラウンドを回避する ため 14 keV とした。検出器はシンチレーションカウン タを用いた。入射角度は分析深さ 1 µm 程度となる 5.5 deg とし、2*θ*=8~60 deg の範囲で行った。薄膜 XRD 測 定の結果は、Python で作成したプログラムを用いて、 機械学習の一種であるクラスタリングを行い、窒化によ り表面に形成された化合物層・拡散層をその類似性から 分類した。またこれを基にして、窒化後の表面の化合物 層・拡散層について、基材の種類ごとに考察した。

SKD61 について、窒化後の各元素の化学状態を検討 するために、あいちシンクロトロン光センター硬X線ビ ームラインII BL11S2 で XAFS 測定を行った。転換電子 収量法でK吸収端近傍の測定を行い、X線の入射角度は 10 deg、測定元素はFe、Cr、Mo、V、Mnとした。

3. 実験結果及び考察

3.1 窒化層形成の確認

窒化前後の試料の外観を表2に示す。また図2に、窒 化した SKD61 断面のビッカース硬度測定の結果を示す。 いずれも表面近傍では、試料内部と比較して硬度が上昇 しており、窒化処理による硬度の向上が確認できた。 EBEP は表面状態の影響は受けにくかったが、GAS は 表面状態の影響を大きく受け、ブラストすることで硬度、 深さともに大きく向上した。

図3は断面の EPMA 測定の結果例(SKD61_鏡面_GAS および EBEP)である。表面から窒素が確認された深さ は、硬度が向上した深さとおおむね一致した。酸素は、 両試料共に表面近傍にあり、GAS の方がより多く、ま た表面近くに確認された。GAS においてはこの酸化物 が窒素の拡散を阻害していることも考えられる。

表2 窒化前後の試料の外観

基材の種類	基材の 表面状態	窒化処理の 方法	外観
SKD61		未窒化	金属光沢
	鏡面	GAS	曇り
		EBEP	金属光沢
	ブラスト	未窒化	曇り
		GAS	曇り
		EBEP	曇り
S25C S45C生材		未窒化	金属光沢
	鏡面	GAS	曇り
		EBEP	曇り
	ブラスト	未窒化	曇 り
		GAS	曇り
		EBEP	曇り

図2 ビッカース硬度測定結果(SKD61)

図 3 EPMA 測定結果(SKD61)

3.2 表面化合物層·拡散層の同定(XRD)

3.2.1 クラスタリングによる分類

図4はXRDの結果をクラスタリングにより分類した ものである。大きく分けて4つのグループ(A、B、C、 D)に分類した。結晶相を同定したところ、Aは化合物層 であるFe₂₋₃Nと、僅かにFe₄Nが確認された。また極 僅かにFe₂O₃が確認された。拡散層もしくは基材である α-Feのピークが見られなかったことから、分析深さ(約 1 μm)よりも厚い化合物層が形成されていると考えられ る。Aは、ガス軟窒化を行った試料がほとんど含まれ、 他のグループと比較的高いThresholdで分類されている。 窒化処理の手法(ガス軟窒化・EBEP 窒化)の違いは、表 面の層に大きく寄与するものと考えられる。

B、Cは、Fe₄N と α -Fe が確認された。 α -Fe が検出 されていることから、化合物層が分析深さよりも薄いと 考えられる。C の方が Fe₄N のピークが僅かであったた め、化合物層がより薄いと考えられる。D はブロード化 した α -Fe が確認された。窒素の拡散によって結晶にひ ずみが生じたためと考えられる。SKD61_鏡面_GAS、 SKD61_ブラスト_EBEP で、極僅かに Fe₂O₃ が確認さ れた。また EPMA で酸素が確認された SKD61_鏡面 _EBEP では Fe₂O₃ のピークが確認されなかった。酸化 物は、微量・非晶質・分析深さより内部にある等の理由 により、XRD で検出されなかったと推定される。

3.2.2 SKD61 の特徴

表3に窒化したSKD61の分類結果を示す。SKD61は 合金元素としてCrが含まれている。SKD61では、多く の場合でブロード化したα-Fe・Crの結晶相が確認され た。窒化処理の方法や基材の表面状態の影響を受けずに、 主として拡散層が形成されると考えられる。また、ブラ スト_GASという特定の条件で窒化物の化合物層が形成 された。なお、鏡面_GAS、ブラスト_GAS、ブラスト _EBEPでは酸化物もわずかに確認された。

XRD では窒化物($\Box_x N$)・酸化物($\Box_2 O_3$)が Fe 主体か Cr主体かということは区別できない。FeとCrが混在・ 固溶している可能性が考えられる。

3.2.3 S25C・S45C 生材の特徴

表4に窒化した炭素鋼(S25C・S45C 生材)の分類結果 を示す。炭素鋼では、窒化処理の手法・基材の表面状態 の違いが窒化後の表面状態に明確に現れた。GAS と EBEPでは、形成される化合物層の結晶相が異なり、そ の厚さはGASのほうが厚い傾向が示された。

また EBEP の方が GAS よりも基材の表面状態の影響 を受けやすいことが示唆された。基材の炭素量の違い (S25C・S45C 生材)は今回の試料の範囲では窒化後の表 面状態に影響を及ぼさなかった。

表 3 SKD61 の表面結晶相					
基材の種類	基材の	窒化処理の	分類されたグループ		
	表面状態	方法	(結晶相)		
SKD61	鏡面	未窒化	C (α-Fe· Or)		
		GAS	D (α-Fe· Or· (Fe _x Or _{1-x}) ₂ O ₃)		
		EBEP	D (α-Fe• Or)		
	ブラスト	未窒化	(a-Fe· Or)		
		GAS	$ \begin{array}{c} A \\ ((Fe_{x}Or_{1-x})_{2-3}N^{\bullet} (Fe_{x}Or_{1-x})_{4}N) \\ (Fe_{x}Or_{1-x})_{2}O_{3} \end{array} $		
		EBEP	$\begin{array}{c} D \\ (\alpha - Fe \cdot Or \cdot (Fe_{x} Or_{1-x})_2 O_3) \end{array}$		

表4 S25C・S45C 生材の表面結晶相

汉 · 5250 5450 王利•2 农田相田伯				
基材の種類	基材の 表面状態	窒化処理の 方法	分類されたグループ (結晶相)	
S25C S45C生村	鏡面	未窒化	C (α-Fe)	
		GAS	A (Fe₂₋₃N• Fe₄N• Fe₂O₃)	
		EBEP	Β (α-Fe∙ Fe₄N)	
	ブラスト	未窒化	C (α-Fe)	
		GAS	A (Fe ₂₋₃ N• Fe ₄ N• Fe ₂ O ₃)	
		EBEP	C (α-Fe・Fe₄N(少))	

3.3 窒化後表面の各元素の状態(XAFS)

SKD61 に含まれる合金元素(Fe・Cr)について、窒化 によって、どのような化学状態となっているかを XAFS 測定により調査した(図 5)。窒化前の試料では、鏡面、 ブラストともにメタルの状態であった。ガス軟窒化試料 では、Fe、Cr ともに化合物の状態、EBEP 窒化試料で はFe はメタル、Cr は化合物の状態であった。化合物の 状態は、各窒化処理の工程から酸窒化物と考えられる。 このため、窒化の方法によって Fe、Cr の反応の挙動が 異なることが示唆された。Mo、V、Mn については、試 料中の元素の濃度が希薄であったため、十分な測定が行 えなかった。これらの元素についても窒化処理による化 合物の形成が予想されるため、手法を検討して調査を行 いたい。

図5 XAFS 測定による Fe・Cr の状態分析結果

3.4 XRD・XAFS の測定結果から想定される層

これまでの結果より想定される、各鋼材の表面の層を 図6に示す。

SKD61 では、XRD の結果から、主として拡散層が確 認され、ブラスト_GAS では化合物層として $Fe \cdot Cr$ の 窒化物の形成が示唆された。また、XAFS の結果と合わ せて考えると、表面近傍には GAS では $Fe \cdot Cr$ 酸窒化 物、EBEP では Cr 酸窒化物の存在が推察された。

炭素鋼では、ガス軟窒化では $Fe_{2-3}N$ が確認された。 鏡面_EBEP では、 Fe_4N が確認され、ブラスト_EBEP ではより薄い Fe_4N が確認された。SKD61と比較して、 化合物層が厚く、明瞭に層を形成していた。

4. 結び

本研究の結果は、以下のとおりである。

- (1) SKD61 では大半の場合で基材や前処理、窒化処理の 方法によらず、主として拡散層が形成された。また、 特定の条件で、化合物層が形成された。炭素鋼では、 化合物層が形成されたが、窒化処理の方法で化合物 層の組成が大きく異なり、EBEP 窒化では、基材の 表面状態によって化合物層の厚さが異なった。
- (2)機械学習を用いてデータを分類することで、結果の 解釈に役立てる事が出来た。機械学習では、初期の 段階で個別のデータを詳細に解析する必要が無いた め、実際の現場でも多量のデータを処理する場合に、 活用することが期待できる。

謝辞

本研究の実施に当たって、シンクロトロン光での測定 にご協力頂いた、あいちシンクロトロン光センター・ビ ームライン担当者 竹田様、山本様、加藤様、酒井様に お礼申し上げます。

文献

- 河田一喜:本当によくわかる窒化・浸炭・プラズマ CVD,9(2012),日刊工業新聞社
- Materials Techology Education Association: STANDARD MICROSTRUCTURES, 1, 60(2018), YAMAMOTO Scientific Tool Laboratory Co., Ltd.