Alcaligenes xylosoxidans の菌体破砕液を固定した電極によるヒスタミンのアンペロメトリック測定

近藤徹弥・矢野未右紀・安藤俊之

ヒスタミンは、遊離とヒスタミン含有量の高いサバやマグロなどの赤身魚において、細菌のヒスタミン脱炭酸酵素活性の作用により生成する不揮発性腐敗アミンの一つであり、アレルギー様食中毒の原因物質である。この中毒は、ヒスタミン含有量が100-400 ng/ml (0.9-3.6 mM)の食品を摂取した時に発生するといわれている1)。症状としては、全身性アナフィラキシー反応や、じっとする、血管支拡張を伴う。

現在のようにが国におけるヒスタミンの法的な規制値は定めていないが、欧米諸国では法的規制値が定められている。アメリカでは、FDA(米国米国食品処理局)がアレルギー様食中毒が懸念される魚について、ヒスタミン濃度が5 mg/100 gを基準値とし、20 mg/100 g以上の場合、事実上腐敗とし、50 mg/100 g以上の場合は健康上有害であるとしている2)。また、水産加工品に対しHACCP(Hazard Analysis Critical Control Point, 食品の危険分析・重要管理点方式)による衛生管理システムが義務づけられ、アメリカ国内はもちろんのことアメリカに輸入される水産加工品についても対象となり、我が国でも対アメリカ向け輸出水産物はこの管理システムに従う必要性が出てきた。

このような背景から、食品の鮮度管理法としてヒスタミン測定が重要になりつつあり、ヒスタミンを簡便かつ迅速に検出定量することが望まれている。しかしながら、従来のHPLC法3)やAOAC法3)による定量法では、酸やアルコールで抽出後、イオン交換カラムで処理する等、前処理が煩雑であり、測定に6時間以上を要する。

近年、アミノ酸酸化酵素を酸素電極若しくは過酸化水素電極と組み合わせたバイオセンサが研究開発されている4)。この方法により、HPLC法に比べて簡便で短時間に測定できる。しかし、この種のバイオセンサはヒスタミンを酸化する際の過酸化水素の生成、もしくは酸素の消費を測定する方法であるため、生体試料をそのまま測定試料とした場合、生体試料中に存在するカタラーゼによる妨害や溶存酸素濃度の変動による誤差が指摘されている。

本研究では、溶存酸素の影響を受けないアミノ酸素酵素を用いたバイオセンサを作製し、その応答特性について検討した。

1. 実験方法

(1) 微生物と培養条件

微生物としてAlcaligenes xylosoxidans IFO13495を使用した。培地としてリン酸水素二カリウム5 g、リン酸一カリウム2 g、塩化ナトリウム5 g、硫酸マグネシウム・七水和物0.1 g、酵母エキス0.5 g、β-フェニルエチルアミン2 gを水1 lに溶かし、pH 7.0に調整したものを用いた。Al.xylosoxidansの保存スラントより1白金耳を160 mlの培地の入った300 ml管三角フラスコに植菌し、30℃、200 rpmで72時間振とう培養したものものを前培養とした。

この前培養液を7.84 mlの培地の入った10 ml容ジャージーケーメンナーに加え、30℃、攪拌速度150 rpm、通気量0.8 l/minで72時間培養した。

(2) アンペロメトリック測定

培養液を遠心分離(12 000 rpm, 20分)により集め、菌体を10 mMリン酸緩衝液(pH 7.5)で2回洗浄した。10 mMリン酸緩衝液(pH 7.5)150 mlに懸濁した菌体を強力超音波発生装置(MSONATOR201M、KUBOTA製)を用いて30秒間処理した。懸濁液を遠心分離し、得られた上清を酵素液とした。タンパク質量は5.02 mg/mlであった。酵素液を小分けにして-60℃で凍結保存し、必要に応じて解凍して使用した。解凍後の酵素液の酵素活性は、4℃で十分にも1か月以上安定であった。

(3) ヒスタミン脱水素酵素活性の測定

Eadyらの方法8)に若干の変更を加えて分光光度的に測定した。200 μmolのリン酸ナトリウム緩衝液(pH 7.5)，0.149 μmolの2,6-ジクロロフェノールインドフェノール(DCIP)，1 μmolのフェナジンメトアルフェート(PMS)，
20 μmolのヒスタミンを含む反応液に酵素液を入れ、全量3.0 mlとして、30℃で600 nmにおける吸光度の減少を追跡した。1分間に1μmolのヒスタミンを酸化する酵素の量を1Uの酵素活性と定義した。調製した酵素液のヒスタミン脱水素酵素活性は1.06 U/mlであった。

(4) タンパク質の定量
Lowryの変法7)によりタンパク質を定量した。標準タンパク質として牛血清アルブミンを用いた。調製した酵素液のタンパク質質量は5.02 mg/mlであった。

(5) 酵素固定化電極の作成
所定量のベンゼンキノン(BQ)を混ぜたカーボンベーストをCPEカーボンベースト電極（内径3 mm、電極面積7.1 mm²、比ーエーエース製）に塗り、電極表面を滑らかに研磨した。電極表面に酵素液を滴下し、ドライヤーで乾燥後、透析膜を被せた。

(6) 電気化学的測定の装置及び測定法
電気化学測定には3電極式を用いた。図1に測定装置の模式図を示す。パソコン(PC9080FA、NEC製)内蔵のDA变换器(DA12(4)-H、インターエース製)から電圧を発生させ、3電極式ポテンショスタット(MODEL1100L、矢崎製作所製)を介して酵素固定化電極の電位を規制した8)。参照電極には銀塩化銀電極(飽和KCl溶液)を、対極には白金線を用いた。電極に流れ込む電流はポテンショスタットに付属した電流電圧計により測定され、その後、アイソレーションアンプ(SA-44、TEAC製)及びA/D変換器(DA12(4)-H、インターエース製)を介して、デジタル信号としてパソコンに取り込まれた。測定セルに10 mlの0.2 Mリン酸ナトリウム緩衝液(pH 7.5)を入れ、電極電位0.5 V(銀結合銀電極基準)において、ヒスタミン添加に伴う電流変化を現時的に測定した。測定セルは恒温槽内で30℃に保ち、強制通気は行わなかった。測定中、測定液は800 rpmで攪拌した。

2. 実験結果及び考察

(1) 酵素触媒電流の経時変化
図2に酵素固定化電極に対して得られた電流の経時変化を示す。測定は0.5 Vの電極電位で測定した。図2に示したように、緩衝液にヒスタミン溶液を添加すると、急激に電流が上昇し、数秒で一定値に達した。ヒスタミン添加に伴う正味の電流増加(I1)は、添加したヒスタミン量とともに増大した。また、この電流増加はBQ及び酵素が共存した場合のみ観察された。このことは、BQが酵素反応と電極反応の電子伝達メディエータとして機能していることを示している。

図2 電流応答の経時変化

(2) 様々な化合物のメディエータの能力
メディエータ型バイオセンサの特性は酸化反応と酵素反応の電子伝達メディエータとして用いる化合物の様々な性質、例えば、酸素との電子移動反応、電極との電子移動反応、酸化還元電位、溶解度等に依存する。そこで、BQを含まないカーボンベーストで作製した酵素固定化電極を用いて、数種の酸化還元性化合物(フェリシアニド、DCIP、BQ、PMS)のメディエータ能力を検討した。

1 mMのヒスタミンを含むリン酸ナトリウム緩衝液(pH7.5)に、酸化還元性を10 mM又は50 mMとなるように添加した時の電流応答を示した。図3に示したように、いずれの化合物でも酸化電流の増大が観察された。特にPMSは本酵素-電極間の良好な電子伝達メディエータとして機能することが示された。BQも濃度により非常によい良好に機能した。BQは再利用が可能であるので、BQがアルカリ溶液中では不安定であるがカーボンベースト中に繰り込むと安定であること、BQが水に溶けにくいことを考慮した結果、以降の実験ではBQをメディエータとして用いることにした。

図1 測定装置の模式図
(3) 酵素量依存性
BQのカーボンペーストへの繰り込み量を5%、ヒスタミン濃度60μMの条件で酵素固定化させた電極に及ぼす影響を調べたところ、固定化した酵素量に応じて、Iは高くなったが、0.01U以上の酵素固定化量では電流値は飽和した。

(4) メディエータ濃度依存性
基質濃度60μM、酵素固定化量0.01Uにおいて、カーボンペースト電極中のBQ量の影響を調べた結果を図4に示した。BQのカーボンペーストへの繰り込み量とともに電流応答は高くなり、5%以上で飽和した。

図3 電流応答に及ぼすメディエータの影響

図4 ベンゾキノンの繰り込み量の電流応答への影響

図5 電流のヒスタミン濃度依存性

(6) 通気の影響
アミノ酸酸酵素を用いたバイオセンサの場合、溶存酸素が電子受容体として働くため、センサ出力は温度変等に起因する溶存酸素の濃度変化の影響を大きく受ける。また、カタラーゼが混入した場合、ヒスタミン酸化によって生じた過酸化水素がカタラーゼにより酸素と水に分解されるため、ヒスタミンの量を低く見積もる可能性がある。一方、脱水素酵素では酸素が電子受容体とならないので、溶存酸素の影響はないと考えられる。実際に、今回用いた酵素固定化電極では、空気通気、窒素通気、酸素通気のいずれの条件下でも応答電流値はほぼ一定であり、溶存酸素の影響が無いかことが確認された。

3. 要 約

Alcaligenes xylosidansの菌体破砕液がヒスタミンに対し特異性の高い脱水素酵素活性を示すことを見出したので、本菌体破砕液をベンゾキノン繰り込みカーボンペースト電極上に塗布し、酵素固定化電極を作製し、木電極のヒスタミンに対する応答特性について検討した。本電極のヒスタミンに対する応答は、酵素固定化量0.01U以上、BQ繰り込み量5%以上で最大であった。また、ヒスタミン濃度が0-20μMの範囲で定常電流との間に良
好な直線関係が得られた。本電極は溶存酸素の影響を受けなかった。

文 献