耐塩性キラー酵母の分泌するキラー因子の性質

木村哲哉・黒頭幸男・北本則行・細川信男・吉田政次

酵母の中には自分以外の種を殺す働きを持ったキラー酵母という酵母が多数存在する。これらはキラー因子と呼ばれる蛋白質性の抗菌物質を分泌するが、これらはこのキラー因子に対して耐性を示す。この性質を利用して、醸造業では野生酵母による発酵中のもろみの汚染を防ぐことが考えられてきた。ときにワイン醸造に関しては、細胞融合などを利用して、キラー性が醸造株に導入されたりしている。一方、味噌醤油など耐塩性酵母の中にもいくつかキラー酵母が存在することが報告されているが、構造など詳細については不明のものが多く、実用株でのキラー化の報告はない。すでに我々は味噌、醤油中よりキラー酵母を分離してそれらの性質を調べたが、これらの中には味噌醤油用の発酵酵母が存在しなかった。そこで、これららの株が分泌するキラー因子を保存用に添加剤的に利用したり、細胞融合などで主発酵酵母をキラー化するときのドナーとして利用する可能性を探るため、これららの株のキラー因子について性質を調べた。

実験方法

1. キラー活性の測定

各培地でキラー株を培養後、第1図に示したように、培養液を遠心分離して菌体を除去した上清をさらに0.22μmのフィルターで濾過滅菌し、これをキラー液として感受性株に対する抗菌活性を測定した。抗菌活性の測定には、感受性株Hansenula anomala IFO 0569をYPD培地（12％食塩を含む）で菌培養し、これを滅菌食塩水で適量に希釈して、食塩12％としたMBM培地にシェーク1枚当たり10⁴となるように塗抹した後、この寒天培地にコルクボール（直径8mm）で穴をあけ、そこに上記のキラー液を適量注入、25℃で3日培養して、死菌帯（ハロー）の幅を測定した。

2. 酵母の培養と増殖度の測定

酵母の培養は特に断りのない限りYPD培地（1％酵母エキス、2％ベプトン、2％グルコース）で所定量の食塩を加えて行った。増殖度の測定は1cmのガラスセルに適量に希釈した培養液をいれて、600nmの吸光度を測定した。キラー活性の測定にはキラー液中に含
耐塩性キラー酵母の分泌するキラー因子の性質

まるで食塩濃度の違いによる活性の誤差をなくすため、各キラー液はpH4.5のクエン酸緩衝液に対し
て透析したものを用いた。

3. キラー因子の耐熱性試験

キラー液を示された温度で経時処理した後、直ちに
零下80℃に保存し、すべての処理が終了したあとでまと
めてキラー活性を測定した。

4. キラー因子のpH耐性試験

キラー液を示されたpHに塩酸または水酸化ナトリウムで調節し、水上で24時間保存した後、残存キラー
活性を測定した。キラー液はクエン酸緩衝液で
pHを4.5に戻してから、活性を測定した。

5. 培地の違いによるキラー活性の変化

所定の食塩濃度、あるいはpHになるようにキラー
検定培地を調節し、感受性株を塗抹してキラー活性を
測定した。

実験結果

1. 培地とキラー株の増殖及びキラー生産性

すでにいくつかの耐塩性キラー酵母の存在が報告さ
れ、これらについて培地の食塩濃度とキラーの生産性
について示されている。これら報告されたすべての株は
食塩の存在しない培地でもキラー因子を生産し、菌
体の増殖にともないキラー因子を分泌することが報告
されている。我々が今回用いた新規耐塩性酵母H－22、
O－38株（いずれもCandida属の同定）について
食塩濃度と生育については既に報告をしている。そ
かで今回、各食塩濃度における増殖とキラーの生産性
について調べたところ、第2図と第3図のように両株
は異なったキラー生産性を示した。O－38株については
第2図に示すとおり、従来報告されている耐塩性キラー
酵母と同様、食塩の存在にかかわらず菌体の増殖に

第2図 O－38株の増殖とキラー活性

○ 増殖度

● キラー活性

第3図 H－22株の増殖とキラー活性

○ 増殖度

● キラー活性

-2-
ともない、キラー因子を分泌していた。一方、H-22株については、第3図のように食塩存在下では菌の増殖に伴いキラー因子を産生したが、食塩非存在下では菌体の増殖が十分に起こるにしても、全くキラー因子を産生しなかった。このような食塩依存性のキラー産生性は従来ない新しいタイプのキラー産生性であり非常に興味深い。

2．キラー因子の耐熱性とpH変化に対する耐性

新たに見いだしたキラー酵母のキラー因子を食品の防腐剤として利用しようとするとき、そのキラースペクトルと並んで安定性が重要になってくる。そこで今回新たに分離したO-38、H-22株のキラー因子について培養上清を用いて耐熱性と耐pH変化について検討を行った。第4図に示すとおり、O-38株のキラー因子については比較的安定で、4℃で徐々に活性が低下する傾向が見られた。25℃では4℃の場合とほぼ同程度の活性を示したが、30℃ではほとんど安定性がないことが認められた。H-22株については第5図に示すようにO-38株のものよりやや安定性が高く、25℃までに3日間放置しても活性がほとんど変化しなかった。30℃では約20％の残存活性が認められたが、35℃では12時間後には完全に失活した。いずれの株もほぼ酵母の生育温度で活性を維持できるような特徴を有していた。

pH変化に対する耐性は、第6図に示すように両キラー因子ともpH往復でのみ安定であった。実験方法に示したとおり、pHを4.5に戻しても活性は戻らなかった。この性質は他の多くのキラー因子よりも見られる性質と一致していた。

3．感受性株を植える培地の食塩濃度とpHのキラー活性に対する影響

O-38、H-22株のキラー因子の活性と、感受性株を生育させる培地の性質について調べた。第7図に示したように両キラー因子とも培地の食塩濃度に依存してキラー活性が上昇した。O-38株のキラー因子は比較的低濃度の食塩からキラー活性が現れたが、H-22株のキラー因子はかなり高濃度の食塩培地でのみキラー活性が検出された。この食塩依存性のキラー性は他の耐塩性キラー酵母の分泌するキラー因子の特徴と一致していた。

また従来報告されてきたキラー酵母が分泌するキラー因子の最もよく作用するpH範囲は、酵母の生育範囲である4から6位のものが大部分であった。
我々の分離したキラー酵母についても第8図のようにこの範囲でキラー活性が検出された。但し範囲はキラーよの安定な領域とも一致していた。また第8図に示した範囲の外では検定株の生育がきわめて悪くキラーの活性測定が不可能であった。

考 察

耐塩性のキラー酵母の存在についてはすでにいくつかの株が報告され、これらうちHansenula anomalaとPichia farinosaについてはキラー因子も精製され詳細に報告されている。これらキラー因子の分子量はそれぞれ30万と1.4万で大きく異なるが、性質的にはよく似ており、耐熱性はそれほど高くなく、40℃くらいから失活する。またpHの変化についても比較的弱く、弱酸性域でのみ安定である。これらの点は、キラー因子が酵母にしか作用しない点から、酵母が生育する範囲内のみ、安定であらためて推察される。今回報告したO－38、H－22のキラー因子もこれらの点と一致しており、典型的な耐塩性キラー因子といえる。特徴的な点としては、H－22株は食塩の存在下でのみキラー因子を産生する点である。おそらくキラー因子の遺伝子発現は食塩に依存しているものと推察される。またこのH－22株はすでに報告したとおり、Candida versatilisにもキラー活性を示す点でも特徴的であり、全く新しいタイプのキラー酵母ある可能性が高く興味がもたれる。

O－38、H－22の両キラー因子とも分子量等詳細な性質はわからないが、分子膜を利用した分離では、分子量1万以上10万以下であることが推察される。今回調査したキラー因子は、耐熱性とpH安定性から、食品の保存料としての利用の可能性は低い。また醸造食品の製造時に生ずる酵母の汚染防止に利用するには醸造用酵母がこれらに耐性を示さなければならないが、残念ながら、これら因子によって醸造酵母の生育が阻害された。これらのことから、今回分離したキラー酵母O－38、H－22両株の分泌するキラー因子は酵母を終了させたり、火入れまでの間の一時的な再発酵防止と産液酵母の混入防止を目的に他の方法と組み合わせて用いれば利用価値があるものと考えられる。

要 約

味噌醤油もろみから分離した耐塩性キラー酵母O－38とH－22の分泌するキラー因子について、培養上清を用いて性質を調べた。その結果、O－38は食塩に関係なくキラー因子を産生するが、H－22は食塩に依存してキラー因子を産生した。また両キラー因子ともそれほど耐熱性はなく30℃から35℃にかけて失活した。また、弱酸性域では安定であることがわかった。キ
ラーニングには食塩が必要であり，作用範囲も弱酸性領域であった。

文献

1）鍵山省吾・相羽富夫・門脇清・茂木孝也：醸酢，14，6－10（1988）
2）鍵山省吾・相羽富夫・門脇清・茂木孝也：醸酢，14，43－46（1988）
3）三輪昭生・伊藤寛・妹尾国夫：味噌の化学と技術，36，25－31（1988）
6）C. Suzuki and S. Nikkuni: J. Biol. Chem., 269, 3041－3046（1944）
7）鬼頭幸男・北本則行・細川信男・大島克己・岡田安司・木村哲哉：愛知食工技年報，33，9－22（1992）