レーザ変位計型形状計測機の高精度化

伊藤俊治*1、水野和康*1、島津達哉*1

Accuracy Improvement of Form Measurement Instrument using Laser Displacement Sensor

Shunji ITO^{* 1}, Kazuyasu MIZUNO^{* 1} and Tatsuya SHIMAZU^{* 1}

Industrial Technology Division, AITEC *1

レーザ変位計で形状をスキャニングする際、試料の傾斜角度が変化し、それに応じて変位計のサンプリ ングデータに誤差が生ずる。高精度化の目的で傾斜角度に応じた誤差をマスター鋼球の形状計測によって 抽出し、4次の多項式を用いて近似した。近似の方法として、鳥や魚などの行動を模擬した PSO と呼ば れる最適化手法を用いた。また、誤差の補正方法として、傾斜角度に対応する位置座標値を算出した後、 近似多項式に代入する方法を提案した。その結果、標準偏差3μm程度の誤差を1.4μmまで低減できた。

1.はじめに

3次元的に形状を非接触で計測する機器として、干渉 計、デジタイザなどがある。このうち、干渉計は、高い 測定精度、狭いレンジ、単純な対象形状という特徴があ る。一方、デジタイザは、低い測定精度、広いレンジ、 複雑な対象形状といった性質を持つ。

本研究の課題は、高さ方向に 10mm 程度の起伏がある 試料の形状を高精度に非接触で計測する場合に、従来機 種では対応できない測定レンジを計測可能にすることで ある。

レーザ変位計を用いた形状計測機は、計測時間を要す るが、広いレンジで高精度な測定が可能である。しかし ながら、形状をスキャニングする際には、傾斜角度の変 化に応じて計測誤差¹⁾が生じる。従来、この誤差の特性 及びその補正方法については検討されていなかった。そ こで、本研究の目的は、こうした誤差を補正することに よってレーザ変位計型形状計測機のさらなる高精度化を 目指した。

2.実験方法

幾何学的な球を図1のように形状計測すると、試料表 面上で異なった傾斜角度を持つ多様な位置におけるZ座 標値が求まる。仮に、この傾斜角度に対するレーザ変位 計の計測誤差が存在しないならば、測定形状は球面状と なる。この場合、球面形状を除去すれば、形状偏差曲面 は完全に平坦になる。実際には、傾斜角度に依存する計 測誤差が存在するので、あたかも形状偏差が存在するか

図1 球面の測定

のような誤差曲面になる。本研究では、この誤差曲面を 次の方法で多項式に近似する。Bを誤差曲面の高さ座標 値とすると、多項式は、(1)式に示すように係数 ai で 記述することができる。

$$B = a_1 + a_2 X + a_3 Y + a_4 X^2 + a_5 X Y + a_6 Y^2 + a_7 X^3$$

+ $a_8 X^2 Y + a_9 X Y^2 + a_{10} Y^3 + a_{11} X^4 + a_{12} X^3 Y$
+ $a_{12} X^2 Y^2 + a_{14} X Y^3 + a_{15} Y^4$ (1)

*1 工業技術部 機械電子室

誤差曲面と近似曲面との残差の2乗和を評価関数とし、 評価関数を最小にするように係数aiを探索的に決定する。 係数が大変多いこと、また次数が高いことから、通常の 最適化手法では探索が困難と判断し、PSO²⁾を最適化手 法として用いた。PSOとは前年度から応用を検討してい る鳥や魚などの行動を模擬した手法³⁾である。誤差曲面 をこの方法で多項式近似するまでを校正と呼ぶことにす る。

校正の後、測りたい試料の形状を計測し、サンプリン グデータを取得して、次の方法で傾斜誤差を補正する。 まず、× z 平面とy z 平面上での光軸に対する試料の傾 斜角度、を、サンプリングデータの差分値から(2) 式のように近似的に求める。

 $= \{ Z (i+1) - Z (i-1) \}$

$$= \{ Z (i+1) - Z (i-1) \}$$

$$/ \{ Y(i+1) - Y(i-1) \}$$
(2)

次に、球の方程式と偏微分から導出した(3)式に、 を代入することによって、その傾斜に対応する校正時 の位置座標値X、Yを算出する。

$$X = - R / (1 + 2 + 2)^{0.5}$$

Y = - R / (1 + 2 + 2)^{0.5} (3)

ここで、Rは校正で用いたマスター球の半径を表す。そして、(1)式の近似多項式に(3)式のX、Yを代入し 補正値を求める。後は、サンプリングデータから補正値 を減算すればよい。

3.実験結果及び考察

真球度 80nm 以下、最大高さ粗さ 0.04 µm 程度に加工 された直径 1 インチの鋼球において 10mm 角の領域を レーザ変位計型形状計測機で計測した。レーザ変位計は 拡散反射方式とした。また、サンプリング数は 21 × 21 点、一点当たりの静止時間は 2 秒である。

生データを**図2**に示す。同図では楕円で示した部位に、 鋼球の光沢に起因すると思われる異常点が生じたので、 鋼球を3%の硝酸水溶液で約5秒間腐食した。**図3**は、 腐食球を触針式の表面粗さ計で測定した結果であり、表 面粗さが比較的均質であることが分かる。ちなみに、測 定条件は、評価長さ8.8mm、ガウシアンフィルタ使用、 カットオフ値0.8mm、円形状除去であり、最大高さ粗さ は0.6µm程度であった。

図3 腐食球の表面粗さ

図4 腐食球の測定

図5 球面形状除去

腐食球において 10mm 角の領域を再計測した結果を 図4に示す。同図では、異常点がないことが分かる。次 に、図4から球面形状を除去して評価した結果を図5に 示す。同図では、残存する光沢によると思われるランダ ムな凹凸が見受けられるが、全体にカルデラ状のうねり があることが分かる。ランダムな凹凸を除去する目的で、 腐食球の場所を変えて8箇所測定し、それらを平均した 結果を図6に示す。同図においては、凹凸は完全には除 去されていないが、カルデラ状のうねりが鮮明である。

カルデラ状のうねりを多項式で近似するには4次程度 の次数で十分と判断し、2章の方法により近似多項式を 求めた。ここで、PSOにおける個体数、及び探索回数は どちらも500とした。また、係数を探索する際、次数が 高い項ほど、変数の変動による影響を大きく受けるので、 1次、2次、3次、4次の項の係数をそれぞれ10、100、 1000、10000で除算して探索した。

この多項式による近似曲面を図7に示した。また、実 測値と近似値とを比較する目的で、横軸に実測値を配置 し、縦軸に近似値を表したプロット図を図8に示す。同 図において45度のラインにプロットが集中するほど近

図6 8箇所の平均

図7 近似曲面

図8 実測値対近似値

似精度が高いと言えるが、相関係数は 0.74 になった。

その他にも、極座標表示によるゼルニケ多項式を用い た近似、及び応答曲面法による近似を行った。ゼルニケ 多項式は光学系などの波面収差を表現するのによく用い

図9 補正した結果

られる。また、応答曲面法は、製品プロセスの最適化や ばらつきの減少などの品質工学の分野において実用化さ れている。応答曲面法には轟ら⁴⁾の開発したエクセルマ クロを使用した。

これら 3 方式を比較すると、所要時間に関しては、 Pentium4、2.40 B GHz、Visual Basic を用いた場合、 それぞれ 25 分、35 分、10 分と轟らの方式が最も短かっ た。ただし、この方式では汎用的にプログラムが構成さ れているので、条件設定等を必要とした。また、各方式 とも近似精度は、ほとんど同じであった。

図6を補正前のデータとし、2章の方式で補正した結 果を**図9**に示す。同図では、カルデラ状のうねりが除去 され、ランダムな凹凸のみが見受けられる。ちなみに、 補正前は = 3 µm であり、補正後は = 1.4µm に高 精度化された。校正に使用した鋼球を最大高さ粗さで 0.6µm よりも大きく荒らし、光沢を抑えれば、さらに 高精度化は可能になると思われた。ただし、表面粗さが 大きくなると、その凹凸の影響を直接受ける可能性も否 定できない。

4.結び

レーザ変位計で形状を計測する際、試料の傾斜角度の 変化に応じて、サンプリングデータに誤差が生ずる。鋼 球をマスターとして多様な傾斜に対する誤差を抽出し、 鳥や魚などの行動を模擬した PSO と呼ばれる最適化手 法によって4次の多項式に近似した。そして、傾斜角度 から位置座標値を算出した後、近似多項式へ代入するこ とによって誤差を求め、補正した。その結果、標準偏差 3µm程度の誤差を1.4µmまで低減できた。

文献

- 1)本川,刈谷,山本,今西,保科:高知県工業技術セン ター研究報告,**31**,79(2000)
- 2)伊庭斉志:進化論的計算手法,P159 (2005),オーム 社
- 3)伊藤,水野:愛知県産業技術研究所研究報告,6, 42(2007)

4)轟章:

http://todoroki.arrow.jp/ssoft/RSMkaisetsu.pdf