研究論文

木質材料切削工具の耐久性向上に関する研究

- TiC被覆放電表面処理工具による木材の周辺フライス切削 -

福田聡史*1、太田幸伸*1、来川保紀*1

Improvement of Durability of Wood Cutting Tool - Performance of TiC Coated Tool Piled up by Electrical Discharge in Wood Milling -

Satoshi FUKUTA, Yukinobu OHTA and Yasunori KITAGAWA

Industrial Technology Division, AITEC * 1

木材の周刃フライス切削において、SKD1、SKH2の工具により、ヒノキ、スプルース、ブナ、ナラの4 樹種を切削し、工具摩耗形態を調べた。その結果、ブナはSKD1、SKH2の摩耗が同程度であったのに対 して、他の3樹種は、SKD1の摩耗がSKH2の約1/2であった。また刃先の摩耗量は、樹種の密度に依存 しなかった。

更に、耐久性を向上させるため、SKD1 を対象に、放電表面処理法により TiC 被覆を施した工具を作製 した。被膜処理した工具でスプルースを切削した結果、未処理に比べ初期摩耗は非常に小さく、切削長 3800mにおいて刃先後退量が約 1/2 になり、耐久性向上が確認できた。

1.はじめに

切削加工は木質材料を利用する上で必須の工程であ り、木質材料が持つ優れた表面性状や木目などを生かす ためには、加工機械の精度に加え、切削条件、工具の性 能が大きく影響している。加工面品質、加工精度の向上 は、その後の研磨工程の負担を軽減するだけでなく、塗 装工程や品質にも影響を及ぼすことが考えられる。

工具の耐久性向上の観点からは、超硬工具や各種コー ティング工具の利用が考えられるが、木質材料の切削に おいては、ある程度の刃先の鋭利さが要求される。その ため本研究では、硬質被膜の調製が可能であることおよ び、生成被膜の密着性が高く¹⁾、鋭利な刃先が形成でき ることに着目し、合金工具鋼(SKD1)を母材として放電 表面処理²⁻⁵⁾した工具の耐久性を調べた。

切削試験は周刃フライス切削とし、切削樹種、工具材 質による工具摩耗形態などを観察し、その結果に基づき 工具調製条件等を検討した。

2.実験方法

2.1 工具母材

未処理工具の母材は、高速度工具鋼(SKH2)および合 金工具鋼(SKD1)を用いた。また、被膜処理工具の母材 には合金工具鋼を用いた。

2.2 放電表面処理および工具調製

放電表面処理は、Ti と対象処理工具を電極として加 工液中でパルス放電を行うことにより、放電により消耗 した電極材料の Ti が分解された加工液構成元素である C と反応し、硬質の炭化物 TiC となる。これが対極の 対象工具表面に被膜として形成される方法である。装置 の概要を図1に示す。

本処理は、母材内部まで処理が進む傾斜被膜が得られ るため、母材との密着性が高いことから、硬度と同時に ある程度の靭性も要求される木材切削工具において有効 な処理であることが予想される。

処理は EDCOAT 仕様の NC 型彫放電加工機(三菱電 機㈱製)を用い、電極は Ti 粉末の成形体である。ピー

図3 切削試験の概要

図4 切削抵抗測定の概要

ーク電流値 8A、パルス幅 8 µ sec、オフタイム 256 µ sec の条件で 20min 間処理を施した。電極の揺動はエッジ に垂直方向とし、液流は処理面に沿って平行に流した。

処理は、工具のすくい面に施した。処理後のすくい面 は粗面であるため、処理を施した後すくい面を平面研削 し、さらに逃げ面から刃付け研磨を行った後、切削試験 に用いた。工具調製の概要を図2に示す。

2.3 被削材

未処理工具の摩耗形態を調べる切削試験では、ヒノキ、 スプルース、プナおよびナラの気乾材を用いた。それぞ れの密度は0.43、0.45、0.55、0.67g/cm³である。また、 被膜処理工具による切削試験にはスプルースを選択し た。

2.4 切削試験

切削試験の概要を**図3**に示す。工具の刃先角は40°、 すくい角は50°、逃げ角は10°に設定した。切削は、 切削円直径が150mm、有効刃が1刃の下向き削りで、 回転数2400rpm、送り速度600mm/min、切削深さ1mm の条件で行った。

処理工具の評価は、図3のとおり処理部をオフセット して切削し、未処理部との比較を行った。

2.5 切削抵抗测定

供試工具の評価において、刃先の鋭利さを評価するた めに切削抵抗の測定を行った。その概要を図4に示す。 切削試験において、一定切削長毎にカッタブロックから 供試工具を取り外し、2次元平削りにおける切削抵抗を

測定した。本測定は、工具をすくい角 35 °、逃げ角 15 °に設定し、切削速度 1800mm/min、切削深さは 20、40 および 80 µ m で、主分力と背分力を求めた。被削材は 厚さ 9mm のスプルース柾目板を用い、処理部と未処理 部の切削抵抗を求めた。抵抗の測定は 30Hz のサンプリ ングで行い、切削中の平均値を求めた。

2.6 刃先線プロファイルおよび刃先後退量の測定

刃先線プロファイル測定の概要を**図5**に示す。プロフ ァイルの測定にはナイフエッジ型触針を用い、触針式粗 さ計(TAYLOR HOBSON社製Form Talysurf)によ り測定した。ナイフエッジの形状は、エッジ幅 0.9 mm、 先端断面の丸み半径 2.5 μ m である。図5のとおり、 工具はすくい面が垂直となるように設置し、触針を切れ 刃線に沿って移動してプロファイルを測定した。

刃先後退量は、切削試験前と各切削長におけるプロフ ァイルを比較し、その変化量の平均値を刃先後退量とし た。

3.実験結果および考察

3.1 未処理工具の工具摩耗

未処理工具 2 種(SKH2、SKD1)を用い、被削材 4 樹種の切削試験を行った。切削長 1200m における刃先 を図6に示す。図は刃先角の2等分線上から観察したも ので、中央の刃先欠損部を介して上部がすくい面、下部 が逃げ面である。両工具ともに、切削樹種によって刃先 欠損部の大きさが異なり、ブナ、ヒノキ、スプルース、 ナラの順で欠損部が大きくなった。また、全ての樹種に おいて、SKD1 よりも SKH2 の刃先欠損部が大きかっ た。すくい面、逃げ面の様子は、SKD1 ではすくい面に 摩耗痕が観察されたが SKH2 では観察されなかった。 一定切削長(1200m)における樹種毎の切削抵抗(背 分力)を図7に示す。一般的に、切削が進行し刃先が鈍 化するに従って背分力は増加することが知られている。 図7の結果は図6の観察から得られる刃先エッジ部の鈍 化程度とよく一致している。

刃先線プロファイルから求めた刃先後退量を図8に示 す。刃先後退量は、背分力増加と同様の傾向を示してい る。工具母材のビッカース硬さを測定した結果、両工具

母材の硬さはほぼ同等(HV780 程度)であったにもか かわらず、図6~8に示すように、SKH2 よりも SKD1 の刃先の摩耗は少なかった。また刃先後退量に対して被 削材の密度や硬さは関係しなかった。以上の結果から、

図10 放電表面処理部近傍のビッカース硬さ

放電表面処理の母材として SKD1 を供試することとした。

3.2 放電表面処理工具

放電表面処理面を図9に、処理表面近傍のビッカース 硬さを図10に示す。測定は、処理面を斜めに切断し、図10 のように硬さを測定した。図9左の処理部分は未処理部 分と比較して明らかに粗面化し、刃付け研磨後の刃先の 鋭利さに影響を及ぼした。そこで、処理面の平面研削を 実施し、図9右の処理部分に示す平滑面を得た後、刃付 け研磨を実施して切削試験に用いた。一方、処理面のビ ッカース硬さは図10のとおり、母材表面下5μmから 処理面最上面に向かって傾斜的に増加する傾向が見られ た。従って、処理工具は平面研削で処理面を仮に10μm 程度除去しても、刃先部は HV1400 程度の硬さが確保 できている。

3.3 切削試験結果

3.2 に示す処理を行った工具で切削長 3800m までの 切削試験を行った。工具の刃先線プロファイルを図11に 示す。切削開始直後の時点では、未処理部分は平滑であ るが、処理部分はおよそ 20 µ m 程度のうねりが生じて いる。これは処理面の凹凸が刃先線に影響した結果と推 定されるが、被削材表面の品質に特に影響は及ぼさなか った。切削長と刃先後退量の関係を図12に示す。未処理 部、処理部ともに刃先は後退したが、処理部の後退量は 未処理部の後退量と比較して少なかった。処理部は切削 長 720m までは、初期 0m のプロファイルがほぼ維持さ れ、未処理部と比較して明らかな後退量の減少が確認で きた。2300m になると処理部も部分的に後退量が大き

刃先線座標(mm) 図11 刃先線プロファイル

図12 切削長と刃先後退量の関係

図13 工具刃先

くなるが、これは未処理面である逃げ面の摩耗の進展に より、その脆弱部に欠損が生じた結果であると思われる。 従って、図12のとおり、720m ~ 2300mの間で処理工 具の刃先後退量はやや増加する結果となったが、その後 の後退傾向は緩やかになった。

切削試験前後の工具刃先を図13に示す。未処理部分で は刃先先端からすくい面に摩耗が生じた。刃先先端部分 のすくい面を観察した結果(図 13 左最下)、摩耗は鱗 状に生じるとともに、刃先が鈍化していることが観察さ れた。それに対して、処理部分のすくい面には顕著な摩 耗は認められなかった。図6の観察結果からも未処理の 場合、SKD1はすくい面側に摩耗を生じる傾向が確認で きたが、すくい面側に被膜処理を施すと摩耗が抑制でき 耐久性が向上した。

4.結び

木材の周辺フライス切削において、切削樹種や工具材 質による工具摩耗形態の相違を調べた。その結果に基づ き、放電表面処理法による TiC 被膜処理によって工具 の耐久性向上を試み、以下の結果を得た。

- (1) 刃先の摩耗に対して、樹種の密度は依存しなかった。また、今回の切削条件では、合金工具鋼(SKD1)の刃先後退量は、高速度鋼(SKH2)の値よりも小さかった。
- (2)未処理工具において確認された刃先の摩耗痕は被 膜処理面では観察されず、被膜の耐摩耗性が確認でき た。その結果、処理工具の刃先後退量が減少したと推 察され、耐久性の向上が確認できた。
- (3) 放電表面処理を施すと、処理面は粗面となるが、 平面研削によって粗さを向上させた後、刃付け研磨を 行うことにより、刃先線に若干のうねりが生じるもの の鋭利な刃先を得ることができた。
- (4) 被膜面はすくい面のみ施しても有効であった。

謝辞

本研究の遂行にあたり、名古屋大学大学院生命農学研 究科 横地秀行助教授、三菱電機株式会社名古屋製作所 杉浦忠直氏に多大なご協力をいただきました。厚く感謝 いたします。

文 献

- 1) 毛呂俊夫ほか: 塑性と加工,41(476),865-870(2000)
- 2) 毛呂俊夫ほか:精密工学会誌,67(1),114-119(2001)
- 3) 松川公映ほか: 材料,49(10),1169(2000)
- 4) 松川公映ほか:三菱電機技報,75(7),465-468(2001)
- 6藤明弘,毛呂俊夫,松川公映:電気加工学会誌,34 (75),38-43(2000)