ポリ乳酸 / 酸化チタンコンポジットの生分解特性

福田徳生*1、高須恭夫*1、高橋勤子*1

Biodegradability of Poly(L-lactide) / Titanium Dioxide Composites

Norio FUKUDA. Yasuo TAKASU and Isoko TAKAHASHI

Research and Development Division, AITEC*1

ポリ(L-乳酸)(PLLA)の酸化チタン(TiO2)とのコンポジットを調製し、その生分解性を評価した。 PLLAを粒径 0.3-0.5umの親水性アナターゼ型TiO₂とコンポジット化することにより、生分解性が促 進されることが明らかとなった。一方、PLLAを疎水性ルチル型TiO2とコンポジット化することによ り、生分解性は抑制されることが明らかとなった。なお 20wt%以下の配合割合であれば、顕著な引張 特性の低下は認められなかった。これらの結果は、コンポジット化する酸化チタンの種類により、 PLLAフィルムの引張特性をほぼ維持しながら、生分解性を制御できることを示している。

1.はじめに

近年、石油の枯渇化・廃棄物問題など環境問題対策 の見地から、生物資源の利用を高めようという動きが 活発になっており、トウモロコシやサツマイモなどの 植物から作られるグリーンプラスチックが注目を集め ている。中でも、ポリ乳酸(PLA)は、物性面及びコスト 面からみて将来の生産増が最も期待されているグリー ンプラスチックであり、企業の注目度も高い¹⁾。PLA は自然界の微生物により、最終的に水と二酸化炭素に まで生分解されるが、幅広い分野で応用するためには、 使用目的に応じて、生分解性を制御することが望まれ る。例えば、生分解性を促進したPLAは、速やかに分 解してほしい育苗ポットや回収処理が問題となってい る短時間使用の切符・チケットなどに、一方、生分解 性を抑制したPLAは、汎用プラスチック代替品として オフィス用品や各種容器類などに使用可能である。

本研究では、ポリ(L-乳酸)(PLLA)の様々な酸化チ タン(TiO2)とのコンポジットフィルムを調製し、TiO2 の形状、表面処理法、粒径、配合比などがコンポジッ

トの生分解性に及ぼす影響について検討した。また熱 的性質、引張特性について調べた結果も併せて報告す る。

2.実験方法

2.1 コンポジットの調製

PLLA((株)島津製作所製 LACTY[™]5000)/ジ クロロメタン溶液 (0.05g/ml) に、一定割合のTiO2を 添加し、超音波処理 キャスティング 180 熱プレ ス 2-3 分以内の急冷、という手順によりコンポジッ トフィルムを得た。本研究で使用したTiO2の基本物性 を表1に示す。

2.2 生分解試験

酵素による生分解試験は、1cm四方に切り取ったフ ィルムをTritirachium album由来プロテナーゼK (1mg)含有Tris-HClバッファー(pH8.6) 5ml中に浸し、 37 で一定時間、振とうすることにより行った。試験 前後の重量より、単位表面積当たりの重量減少量を、 以下の式により算出した²)。

表1 供試酸化チタン試料						
種類	結晶形	表面処理	親疎水性	粒径 (µm)	粒子形	
TTO-55(N))	なし	親水性	0.03-0.05	球状	
TTO-55(A)		Al_2O_3	親水性	0.03-0.05	球状	
TTO-55(C)		Al ₂ O ₃ , ステアリン酸	疎水性	0.03-0.05	球状	
TTO-S-2	ערדע א	ZrO ₂ , Al ₂ O ₃ , ステアリン酸	疎水性	0.01-0.02(短軸),0.05-0.1(長軸)	紡錘形状	
TTO-M-2		ZrO ₂ , Al ₂ O ₃ , ステアリン酸	疎水性	0.03-0.05(短軸),0.1-0.25(長軸)	紡錘形状	
TTO-D-2	J	ZrO ₂ , Al ₂ O ₃ , ステアリン酸	疎水性	0.04-0.07(短軸),0.2-0.3(長軸)	紡錘形状	
KA-10C	l _{7+2−} #	なし	親水性	0.3-0.5	粉状	
KA-20	9-6 ر کر	Al_2O_3	親水性	0.3-0.5	粉状	

フィ	ルム	、全体	の重	量減少	(μg/m	m^2)
----	----	-----	----	-----	-------	---------

= (Wb - Wa) / Sb

Wb: 生分解前のフィルム重量(µg)

Wa: 生分解後のフィルム重量(µg)

Sb: 生分解前のフィルム表面積(mm²)

PLLAの重量減少(µg/mm²)

= (フィルム全体の重量減少)・X_{PLLA} / (V_{PLLA})^{2/3} X_{PLLA} = W_{PLLA} / (W_{TiO2} + W_{PLLA})

Vplla

=(Wplla / ρ plla) / (W tio2/ ρ tio2 +Wplla/ ρ plla)

WPLLA: 生分解前のPLLA重量(µg)

WTiO2: 生分解前のTiO2重量(µg)

ρPLLA: ポリ乳酸の密度 (1.2g/cm³)

ρ_{TiO2}: TiO₂の密度(アナターゼ 4.2g/cm³, ル チル 3.9g/cm³)

なおPLLAの重量減少は、コンポジットフィルムから 脱離するPLLAとTiO2の比率が、元のフィルム中の表 面積当たりのPLLAとTiO2の比率と同じであるという 仮定の下で算出した。

コンポストによる生分解試験は、家庭用コンポスタ ーを用いて、そば殻・米ぬかを主体としたコンポスト 中に 20x1.1x80mm の試料を静置し、1日2回攪拌し ながら(攪拌時試料は取り出す)、40~60 で行った。

2.3 物性試験など

熱的性質は、示差走査熱量計DSC-60((株)島津製 作所製)により検討した。重量平均分子量(Mw)及び数 平均分子量(Mn)は、TSK Gel GMH_{XL}(東ソー(株)製) 2本を装着したHLC-8020 GPCシステム(東ソー(株) 製)を用いて測定した(溶離液:クロロホルム、標準物 質:ポリスチレン)。

フィルムの表面及び破断面の観察は、走査電子顕微 鏡(日立製作所製 FE-SEM S-4500) により行った。

引張試験は、JIS K 7113 に基づいて、試験速度 5mm/min で行った。

3.実験結果及び考察

3.1 PLLAコンポジットフィルム中PLLAの分子量及 び熱的性質

調製したPLLAコンポジットフィルム中のPLLAの分子 量を表2に示す。20wt%の疎水性ルチル型TiO2 (TTO-55(C)及びTTO-D-2)とのコンポジットにおいて、 PLLAの分子量低下がある程度認められたものの、いずれ のコンポジットにおいてもPLLAの分子量の著しい低 下及び分散度(Mw/Mn)の増加は認められなかった。こ のことは、本フィルムを調製する過程において、熱な どによるPLLAの顕著な劣化は無いことを示唆する。

表2 調製したフィルム中の PLLA の分子量

	TiO2濃度	$Mw / 10^5$	Mw / Mn
	(Wt%)	(g/mol)	
無添加	0	1.8	1.7
TTO-55(A)	20	1.6	1.9
TTO-55(C)	20	1.4	1.8
TTO-D-2	5	1.7	1.9
	20	1.3	1.8
KA-10C	5	1.6	1.9
	20	1.7	1.7

表3は、調製したPLLAコンポジットフィルム中の PLLAの融点(Tm)、結晶化温度(Tc)、ガラス転移点(Tg)、 結晶化度(____)を示す。本フィルムは、熱プレス後急冷 することにより調製しているので、結晶化度0%となっ ていることが確認できる。これは、以後述べる物性に おける結晶化度・結晶構造の影響が無いことを意味し ている。いずれのTiO2とコンポジット化した場合も、 無添加PLLAと比べて、融点及びガラス転移点の5 以 上の変化は認められなかった。結晶化温度は、疎水性 ルチル型TiO2(TTO-55(C)及びTTO-D-2)とのコンポ ジット化により低下した。なお 30wt%の配合割合によ り、97 から 80-82 にまで低下した。これは、疎水 性TiO2がPLLA結晶の核化を促進する働きがあること を示唆する。

表3 フィルム中の PLLA の熱的性質

	TiO2濃度	Tm	Tc	Tg	с
	(wt%)	()	()	()	(%)
無添加	0	172	97	57	0
TTO-55(A)	2	172	96	57	0
	5	172	93	56	0
	10	171	93	56	0
	20	172	91	57	0
	30	172	90	56	0
TTO-55(C)	2	172	95	57	0
	5	172	95	57	0
	10	172	92	57	0
	20	172	83	58	0
	30	171	80	56	0
TTO-D-2	2	171	95	58	0
	5	171	93	58	0
	10	171	92	57	0
	20	171	85	58	0
	30	171	82	59	0
KA-10C	2	172	98	57	0
	5	172	97	55	0
	10	172	97	55	0
	20	172	98	55	0
	30	171	98	54	0

3.2 PLLAコンポジットフィルムの生分解性

酵素プロテナーゼK存在下での分解によるフィルム 重量の経時変化を図1に示す。いずれのフィルムも、 誘導期がなく、0~4.5時間において時間に比例して重 量減少量が増加した。この0~4.5時間における重量減 少速度は、粒径0.3-0.5µmの親水性アナターゼ型TiO₂、 KA-10C(20wt%)とのコンポジット化により高くなっ た。一方、ステアリン酸処理した疎水性ルチル型TiO₂、 TTO-D-2 (20wt%)とのコンポジット化により、重量減 少速度が著しく抑制された。なおいずれのフィルムも 4.5~24時間における重量減少速度は、徐々に遅くなっ た。これは、溶液中での酵素の失活によるものと考え られる。酵素非存在下での重量減少はいずれのフィル ムにおいても全く認められなかった。これから、酵素 プロテナーゼKによりPLLAが生分解していることを 確認できる。

様々なTiO2を 20wt%の配合比で添加したPLLAコン ポジットフィルムの酵素による分解結果を**表4**に示す。 重量減少速度は、0~4.5 時間における単位時間当たり 単位表面積当たり重量減少量とした。粒径 0.3-0.5µm の親水性アナターゼ型TiO2(KA10C, KA20)とコンポジ ット化することにより、重量減少速度がフィルム全体に おいて 2~2.5 倍、またPLLA換算で 1.6~2 倍促進され ることがわかった。また今回検討した全ての疎水性TiO2 (TTO-55(C), TTO-S-2, TTO-M-2, TTO-D-2)によって、 生分解性の抑制が認められた。これは、TiO2が疎水処 理されているので、親水性である酵素のPLLAへの接触 が阻害されたためであると考えられる。

PLLAコンポジットフィルムの酵素分解速度のTiO2 濃度依存性を調べた結果を**図2**に示す。興味深いこと に、コンポジット化するTiO2の種類により分解挙動の 濃度依存性が全く異なることがわかった。粒径 0.03-0.05µmの親水性アナターゼ型TiO2である TTO-55(A)は、2~40wt%の配合割合において重量減少 速度の顕著な変化を誘導しなかった。疎水性ルチル型 TiO2であるTTO55(C)及びTTO-D-2 をコンポジット化 した場合、配合割合を増大させると、生分解速度は

表4 フィルムの酵素分解による重量減少速度

	フィルム全体における重量 減少速度 (µg mm ⁻² h ⁻¹)	PLLAの重量減少速 度(µg mm ⁻² h ⁻¹)
無添加	2.50	2.50
TTO-55(N)	3.11	2.61
TTO-55(A)	3.13	2.63
TTO-55(C)	1.43	1.20
TTO-S-2	0.56	0.47
TTO-M-2	0.49	0.41
TTO-D-2	0.45	0.37
KA-10C	5.87	4.93

より遅くなった。これに対して、粒径 0.3-0.5µmの親 水性アナターゼ型TiO2であるKA-10Cをコンポジット 化した場合には、配合割合を高くするにつれて、生分 解速度はより速くなった。これらの結果は、コンポジ ット化するTiO2の種類と濃度を適宜選択することによ って、PLLAフィルムの生分解性を制御できることを示 している。

疎水性の TTO-D-2 (20wt%) 及び親水性の KA-10C (20wt%) とコンポジット化した PLLA フィルムの酵素 分解(48時間)前後の表面のSEM 観察結果を、無添 加の PLLA 表面の観察結果と共に、図3に示す。いず れのフィルムも酵素分解前は、図3(a)に示すように滑 らかであった。無添加の PLLA フィルムには、酵素分 解により、直径 30-100μm のクレーターのような孔が 形成された (図3(b))。TTO-D-2 とコンポジット化し たフィルムは、酵素分解しても表面に粒子のみが抜け 出たような非常に小さい孔が認められるものの幾分滑 らかな表面であった (図3(c))。一方、KA-10Cとコン ポジット化したフィルムを酵素分解すると、数μmの大 きな空隙が多数認められた(図3(d))。なおこれらの観 察結果は、これまで示してきた酵素分解速度の結果を 支持している。

(c)

3.0kV バー:10µm

- 図3 酵素分解前後のフィルム表面の SEM 観察
 - 分解前 KA-10C 含有 PLLA コンポジット (a)
 - 分解後無添加 PLLA **(b)**
 - 分解後TTO-D-2含有PLLA コンポジット (c)
 - 分解後 KA-10C 含有 PLLA コンポジット (d)

疎水性の TTO-D-2 (20wt%) 及び親水性の KA-10C (20wt%) とコンポジット化した PLLA のシートを 30

日間コンポスト中で分解した場合の重量減少量を測定 した結果を表5に示す。酵素分解した場合と同様、疎 水性の TTO-D-2 とのコンポジット化により分解速度 は無添加の PLLA フィルムと比べ抑制され、逆に親水 性の KA-10C とのコンポジット化により分解は促進さ れた。

表5	フィ	ルムのコン	ンポスト	 分解に 	よる	重量減少量
----	----	-------	------	-------------------------	----	-------

	試験前重量	重量	減少	
	(mg)	量	率	
		(mg)	(%)	
無添加 PLLA	2267	116	5.1	
20wt% TTO-D-2	2452	79	3.2	
20wt% KA-10C	2491	180	7.2	

3.3 PLLAコンポジットフィルムの引張特性

20wt%の配合割合で様々なTiO2をコンポジット化し たPLLAフィルムの引張破断強度・ヤング率の測定結果 を図4に示す。粒径 0.3-0.5µmのアナターゼ型TiO2を コンポジット化した場合、無添加のPLLAに匹敵する引 張破断強度が認められた。ルチル型TiO2をコンポジッ ト化した場合の引張破断強度の低下度合いも 22-35% であり、顕著な低下ではなかった。ヤング率は、ルチ ル型TiO2をコンポジット化した場合、増加した。

4.結び

TiO2とのコンポジット化により、PLLAの生分解性 を制御可能であることが見出された。環境に配慮した 材料であるPLLAの用途を拡大するためには、生分解性 を制御することが望まれており、本コンポジット化が PLLAの用途拡大に有効であることが示唆される。

文献

- 1) 辻 秀人、筏 義人:ポリ乳酸、高分子刊行会
- 福田徳生ほか: Polym. Degrad. Stab., 78, 119-127 2) (2002)