環境浄化セラミックスの開発（第1報）
－TiO₂光触媒タイルによるNOₓの除去－
山口知宏 星幸二 深澤正芳 久野徹
Development of Ceramics for Removing Pollutants from Environment (Part I)
－Removal of NOₓ by TiO₂ Photocatalysts Anchored on Tiles－
Tomohiro YAMAGUCHI, Koji HOSHI, Masayoshi FUKAZAWA and Toru KUNO

環境浄化セラミックスの開発の一環として、TiO₂光触媒タイルをソルーゲル法により作製し、そのNOₓ除去性能について検討したところ、次の結果を得た。ソルーゲル法によりTiO₂をタイル表面に固定化することができた。そのコーティング量は回数に比例し、1回に付着約0.21g/m²ずつ増加した。得られたTiO₂光触媒タイルに紫外線を照射して、NOₓ除去性能があることを確認した。NOₓ除去性能から、コーティング回数は9回程度、熱処理温度は500℃程度が良いことがわかった。光触媒性能評価装置に設置するタイルの枚数や反応容器の構造を検討し、NO除去率70.0%、NOₓ除去率32.0%の性能を得ることができた。

1. まえがき

近年、大都市圏では自動車排出ガスによる窒素酸化物（NOₓ）汚染が深刻な問題となってきており、大気中のNOₓ削減技術の確立が急がれている。

このような状況下で、現在、最も注目されているのが光触媒を用いたNOₓの除去法である。これには酸化チタン（TiO₂）などが有機光触媒作用を利用して、一酸化窒素（NO）や二酸化窒素（NO₂）を酸化して、硝酸（HNO₃）として捕集・回収することにより、NOₓを削減しようというものである。現在のところ、TiO₂などをふっ素樹脂に練り込んだシート状光触媒などについて、大気中のNOₓ除去試験が行なわれ、成果を上げている1,2)。

われわれは、この技術をタイルに応用するため、光触媒機能を有したタイルを作製し、そのNOₓ除去性能について検討した。

2. 実験方法

2.1 タイル基板の作製

顆粒粉を成形圧20MPaでプレス成形し、焼成温度1250℃、保持時間1時間、昇温速度100℃/hで焼成することにより、7cm辺のタイル基板を得た。このタイル基板は、かさ比重が2.30、吸水率が0.51%、曲げ強度が45.4MPaであった。

2.2 TiO₂光触媒タイルの作製

TiO₂光触媒タイルを作製する上で重要なポイントとなるのは、TiO₂のタイル基板への固定化である。TiO₂にはいくつかの異なる結晶形があるが、光触媒作用が大きいのは低温で存在するアナターゼであり、高温で生成するルチルは光触媒作用が小さいことが知られている3)。このため、固定化にあたっては、通常のタイルの焼成温度よりもかなり低い温度で熱処理できないといった制約がある。そこで、TiO₂のタイル基板への固定化は、比較的容易に低温コーティングが可能な図1に示すソルーゲル法により行なった。

コーティング液は、チタン酸ソリドプロポキシド0.18molを含むエタノール溶液に、HC1（HC1:0.01mol、H₂O: 0.27mol）、を添加したエタノール溶液を滴下し、1時間攪拌することにより調製した。この溶液にタイル基板を浸す、50mm/minの一定速度で引き上げた後、100℃で乾燥した。浸漬→引上げ→乾燥を繰り返すことによりコーティングを重ねたが、5回以上繰り返すとTiO₂がタイル基板から剥離したため、3回ごとに500℃で熱処理した。最後に、これを500–1000℃の所定温度で、保持時間30分、昇温速度2℃/minで熱処理することにより、TiO₂光触媒タイルを得た。
ETOH

Ti [OCH (CH$_2$)$_3$]: 0.18mol

ETOH

2N HCl
(HCl: 0.01mol, H$_2$O: 0.27mol)

滴下

受持 1h

コーティング 50mm/min

繰り返し

乾燥 100℃

予備加熱 500℃ 30min 2℃/min

本加熱 500～1000℃ 30min 2℃/min

TiO$_2$ 光触媒タ イル

図1 TiO$_2$光触媒タイルの作製法

TiO$_2$光触媒タイルのNO$_x$除去性能評価装置の構成

図2 NO$_x$除去性能評価装置の構成

2.3 TiO$_2$光触媒タイルのNO$_x$除去性能の評価

TiO$_2$光触媒タイルのNO$_x$除去性能の評価試験には、図2に示すような実験装置を用いた。

作製したTiO$_2$光触媒タイルを直径25.5cm、高さ4cm、内容容積約2ℓの反応容器に入れた。大気から取り入れた空気とボンベから供給された100ppmのNOガスを流量計を用いて混合し、1ppmのNOを含む空気を調製して、これを模擬汚染空気として使用した。容器内にこの模擬汚染空気を1ℓ/分の流量で連続的に流すとともに、容器の上からTiO$_2$光触媒タイルに光を照射した。用いた光源はプラックライトと白色蛍光灯の2種類で、いずれも15Wである。プラックライトは最大波長が365nmにあるが、白色蛍光灯は400nm以上の可視部に最大波長がある。プラックライトを2本点灯した場合の360nmにおける光の強度は約4mW/cm2であった。光の照射により容器内の温度は若干上昇したものので、反応温度は20±5℃であった。今回の実験では相対湿度の影響を認められなかったが、実験条件を一定とするため、調湿器により相対湿度は一定（75、1％）とした。容器から出てくるNO、NO$_x$、NOx濃度は、化学発光式のNOx計により測定した。

3. 実験結果及び考察

3.1 TiO$_2$のタイル基板への固定化

熱処理温度が500℃の場合のコーティング回数とコーティング量の関係を図3に示す。コーティング量はコーティング回数に比例して増加し、12回のコーティングでは2.58g/m2であった。これはコーティング回数1回に伴う光吸収0.21g/m2ずつ増加したことになる。また、タイル基板の表面積とアラターゼの密度3.89g/cm3から求めたみかけの膜厚は、12回のコーティングで0.66μmとなった。このようにコーティングを重ねることにより、TiO$_2$のタイル基板へのコーティング量を増やすことができ、膜厚の制御が可能である。

タイル基板及びTiO$_2$光触媒タイル表面の走査電子顕微鏡による観察結果を写真に示す。タイル基板（A）は表面が凹凸しており、所々に深い穴が認められた。これは、プレス成形した際に粒が分離した隙間がある穴として残ったものと思われる。一方、TiO$_2$光触媒タイル（B）の表面は一部に亀裂があるものの、全体に滑らかであった。タイル基板の穴の部分はコーティング液がたまりやすく、亀裂ができやすいものと思われる。しかし、このTiO$_2$薄膜は手で擦ったりでは剥離せず、強固に付いているものと思われる。

図3 コーティング回数とコーティング量（みかけの膜厚）の関係
3.2 TiO₂光触媒タイルによるNOx除去

TiO₂光触媒タイルに光を照射するとNO、NOx濃度はともに直ちに減少し、光の照射を止めると元の濃度に戻ることから、作製したTiO₂光触媒タイルにNOx除去性能があることを確認した。なお、光照射中にはNOxの発生が認められた。また、このNOx除去試験に使用したTiO₂光触媒タイルを蒸留水で洗浄し、その洗浄水をイオンクロマトグラフで分析すると除去したNOxのおよそ96％に相当するNO₃⁻が検出された。これらのことから、光の照射によりNOはNO₂を経てHNO₃になり、TiO₂の表面に捕捉されたものと考えられる。TiO₂光触媒タイルは使用することにより性能が低下したが、水洗することでNOx除去性能はほぼ完全に回復した。

3.3 コーティング回数とNOx除去

コーティング回数とNO、NOx除去率、NO₂発生率の関係を図4に示す。これらの値はいずれも光照射後3時間のものである。NO、NOx除去率、NO₂発生率はともにコーティング回数の増加にともない増加したが、コーティング回数が9回以上ではあまり変化はなかった。これはNO→NO₂→HNO₃の変化が表面近傍で起こるため、膜の内部は反応にあまり寄与しないものと思われる。したがって、コーティング量を多くしてもNOx除去性能は向上せず、コーティング回数で9回程度、コーティング量で2g/m²程度、みかけの厚さで0.5μm程度である。

3.4 熱処理温度とNOx除去

熱処理温度とNO、NOx除去率、NO₂発生率の関係を図5に示す。NO、NOx除去率、NO₂発生率はともに熱処理温度の増加にともない減少する傾向にあった。また、このときのTiO₂光触媒タイルのX線回折図を図6に示す。500℃ですでにアナターゼが生成しており、熱処理温度の増加にともない、アナターゼのピークは増
加した。1000℃でルチルが生成し始めると、アターゼのピークは小さくなった。アターゼは結晶性が高いほど、光触媒活性は高いことが知られているが、今回もそのような結果にはならなかった。これは熱処理の際にタイル基板に含まれるナトリウムなどの成分が膨張し、TiO₂の光触媒としての機能を低下させているためと思われる。したがって、熱処理温度はなるべく低温であることが望ましいが、400℃以下では未燃焼の有機物が膨張に残り、茶色に変色したり、剝離しやすいなどの欠点があるため、500℃程度が適当であると思われる。

3.5 TiO₂光触媒タイルの枚数とNOx除去

TiO₂光触媒タイルの枚数とNOx除去率、NOx発生率の関係を図7に示す。装置の構造上、枚数を増やしたときに、それぞれのタイルに照射される光の強度は等しくないものの、NOx除去率、NOx発生率ともに枚数が増加するほど増加する傾向があり、7枚のときにNOx除去率は45.5%、NOx除去率は21.8%であった。このことから、タイルの枚数を増やし、NOxとの接触面積を増やすことはNOx除去に有効であることがわかった。

次に、反応容器のガスの入口と出口にそれぞれガラス製の邪魔板を入れ、NOx除去効率の変化をみた。NOx濃度の経時変化を図8に示す。邪魔板を入れた場合の光照射3時間後におけるNOx除去率は70.0%、NOx除去率は32.0%となり、邪魔板を入れなかった場合に比べて増加した。邪魔板を入れることにより、NOxガスは容器内で十分攪拌され、NOxとの接触時間が増加したため、NOx除去性能が向上したものと思われる。このことから、TiO₂光触媒タイルとNOxガスの接触時間が増やすことは、NOx除去性能を向上するのに有効であると考えられる。

3.6 光源の種類とNOx除去

光源の種類とNOx除去率、NOx発生率の関係を図9に示す。蛍光灯よりブラックライトが、また、1本より2本の方が光触媒活性が高かった。光の強度は大きい方がNOx除去性能が高いが、同時にNOx発生するため、トータルのNOx除去率はほとんど関係ないことがわかった。

NOxは有害物質であるため、その発生を抑制する光触媒の開発が検討課題として残った。さらに光触媒活性の持続時間が1日程度であるため、その持続的に向上する課題である。一方、白色蛍光灯で光触媒効果が認められたので、室内でも使用可能であることを示しており、悪臭物質除去などへの応用が期待できる。

図7 タイルの枚数とNO、NOx除去率、NOx発生率の関係

図8 光触媒タイルのNOx濃度の経時変化

図9 光源の種類とNO、NOx除去率、NOx発生率の関係

4. まとめ

(1) ズルーテル法によりTiO₂をタイル基板に固定化することができた。コーティング量はコーティング回数に比例し、コーティング1回に約0.21g/m²ずつ増加した。

(2) 得られたTiO₂光触媒タイルにはNOx除去性能があることを確認した。

(3) コーティング回数の増加にともない、NOx除去性能は向上したが、コーティング回数が9回以上ではあ
まり変化がなかった。コーティング回数は9回程度で十分であることが分かった。

（4）熱処理温度の増加にともない、ＮＯₓ除去性能は低下した。熱処理温度は500℃程度が良いことが分かった。

（5）ＴＩＯ₂光触媒タイルの枚数の増加にともない、ＮＯₓ除去性能は向上した。また、邪魔板を入れることにより、ＮＯₓ除去性能はさらに向上した。このときの光照射3時間後のNO除去率は70.0％、NOₓ除去率は32.0％であった。NOₓ除去性能の向上に、NOガスとの接触面積や接触時間を増加させるのが有効であることが分かった。

（6）白色蛍光管よりブラックライトが、また、1本より2本の方が触媒活性は高いが、同時にNO₂が発生するため、トータルのNOₓ除去率はほとんど変わらなかった。

文 献

1）指宿要嗣，工業材料，41，59〜64（1993）。
2）竹内浩士，NIREニュース，8，1〜6（1995）。
3）佐藤真理，光が関わる触媒化学，日本化学会編，学会出版センター（1994）p.110。
4）ファインセラミックス事典，ファインセラミックス事典編集委員会編，技報堂出版（1987）p.317。